Chemistry of Insect Antifeedants from Azadirachta indica (Part 13^{1}): On the Use of the Intramolecular Diels-Alder Reaction for the Construction of transFused Hydrobenzofuran Fragments for Azadirachtin Synthesis

Hartmuth C. Kolb, Steven V. Ley,* Richard N. Sheppard, Alexandra M. Z. Slawin, Stephen C. Smith, David J. Williams and Anthony Wood
Department of Chemistry, Imperial College of Science, Technology \& Medicine, London, SW7 2AY, UK

Abstract

This paper describes a detailed analysis of the influence of various substituents on the stereochemical outcome of the intramolecular Diels-Alder cyclisation of a number of ether-linked trienes. In particular, the role of diene planarity in governing reaction synchronicity and related twist asynchronicity is delineated. Additionally, the controlling influence of a large dimethyl(phenyl)silyl substituent on the dienophile portion of the triene is also explored. A detailed transition-state analysis is given together with X-ray structures for compounds 41 and 46.

During our synthetic studies towards the potent insect antifeedant azadirachtin $1,{ }^{2}$ we have had cause to examine in detail several aspects of an intramolecular Diels-Alder (IMDA) reaction necessary for the eventual construction of the decalin portion of this molecule. ${ }^{1,3}$

1
Here we discuss in full the factors which control this key reaction, particularly the role of dimethyl(phenyl)silyl substitution on the dienophile and the effects of substituent changes on the diene.
In recent years the IMDA reaction has been recognised as one of the most powerful and versatile methods for the preparation of polycyclic systems. Indeed, much has already been discovered regarding the factors which control this important reaction. ${ }^{4}$ In this work we will focus on a variant of the IMDA reaction in which the precursor trienes have two carbon atoms and one oxygen atom in the tether along with a large side-chain substituent, \mathbf{R}^{\prime}. Additionally, an electrondonating moiety at $\mathrm{C}(2)$ and an electron-withdrawing one at $C(8)$ facilitate asynchronous peripheral bond formation (Scheme 1). Furthermore, we have examined the effect of changes in the terminal $C(9)$ dienophile substituent, X and the diene $C(3)$ substituent, Y.

Scheme 1
This example of the IMDA reaction achieves the formation of two rings and up to three stereogenic centres in one operation and, therefore, requires very careful transition-state analysis in order to make reliable predictions regarding the relative stereochemistry of the products. Any analysis must encompass a range of controlling factors including, endo versus exo reaction
modes, ${ }^{5}$ the effect of a large $\mathrm{C}(5)$ group in the tether and consequential $A_{1,3}$ strain, ${ }^{6}$ transannular and other steric interactions, $A_{1,2}$ strain and related diene twisting about the $\mathrm{C}(2)-\mathrm{C}(3)$ bond. As a result of the triene substitution pattern, asynchronicity leading to advanced peripheral-bond formation and the impact of twist asynchronicity ${ }^{7}$ associated with the various transition states must also be considered.
Before examining the pertinent IMDA reactions, preparation of the precursor trienes 2-7 was necessary. Trienes 5 and 6 had been synthesized during previous studies ${ }^{1,8}$ and it was envisaged that the remaining examples could be prepared by adopting existing procedures. As these routes mirror closely those already described they are presented in schematic form for the sake of brevity.

2

4

3

5

6

Results and Discussion

In general, one of two strategies was adopted for triene synthesis involving construction of the latent diene carbon framework either prior to or following etherification, as in Schemes 2 and 5, and Schemes 3 and 4 respectively. For details of the synthesis of the β-silicon-substituted acrylate 23 the reader is directed to the preceding paper ${ }^{1}$ and for the substituted dithiane 9 to our

10

12

2

Scheme 2 Reagents and conditions: i, ethylene glycol, PPTS, benzene, heat, $36 \mathrm{~h}\left(89 \%\right.$); ii, LiAlH_{4}, inverse addition, $\mathrm{Et}_{2} \mathrm{O},-50^{\circ} \mathrm{C}, 25 \mathrm{~min}$ (73%); iii, $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 42 \mathrm{~h}(8,75 \%$); iv, $9, \mathrm{BuLi}$, TMEDA, THF, $30^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$; then $8,-95^{\circ} \mathrm{C}, 15 \mathrm{~min}(10,93 \%) ; \mathrm{v}, \mathrm{KH}$, benzene, 1 h , methyl 2-(bromomethyl)propenoate, 10 min ($11,65 \%$); vi, 2% aq. acetone, PPTS, heat, $4 \mathrm{~h}(12,91 \%$; vii, propane-1,3-diol, PPTS, benzene, heat, $3 \mathrm{~h}\left(13,83 \%\right.$; viii, TBDMSOTf, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$, $30 \min (2,90 \%)$

Scheme 3 Reagents and conditions: i, dimethyl (2-oxopropyl)phosphonate, LiCl, $\operatorname{Pr}^{i}{ }_{2} \mathrm{EtN}, 39 \mathrm{~h}, \mathrm{DMF}$ (15, 65\%); ii, TBDMSOTf, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 30 \mathrm{~min}(3,86 \%)$
original work in this area. ${ }^{8}$ All four routes employ standard reagents and are uneventful. The instability of trienes 4 and 5 is noteworthy and required their direct cyclisation following limited purification.

iv

21
20

4
Scheme 4 Reactions and conditions: i, KH, THF, 17 min , methyl 2-(bromomethyl)propenoate, $30 \mathrm{~min}(17,88 \%$); ii, HF, pyridine, MeCN, 16 h (18, 77\%); iii, DMSO, (COCl) $)_{2}$, THF, - $35^{\circ} \mathrm{C}, 20 \mathrm{~min}$; $\mathrm{Et}_{3} \mathrm{~N},-78{ }^{\circ} \mathrm{C}$ to $21^{\circ} \mathrm{C}(19,70 \%$); iv, α-diethoxyphosphonyl $-\gamma-$ butyrolactone, $\mathrm{LiCl}, \operatorname{Pr}^{\mathrm{i}}{ }_{2} \mathrm{EtN}, \mathrm{MeCN}, 24 \mathrm{~h}[(Z)-20,13 \%$; (E)-21, 42\%]; v, Tebbe reagent

With the prerequisite trienes in hand the stage was set for examination of the comparative IMDA reactions (see Table 1). Before giving a detailed account of product distribution it is pertinent to make some general comments. First, we find that certain reactions, entries 3 and 4, proceed best in toluene solution containing acid scavengers, e.g. Hünig's base, and antioxidants, e.g. hydroquinone, and in silylated or basewashed glassware. If the diene component is constrained to planarity by annulation, as for entries 3 and 4 , this allows the IMDA reaction to proceed at lower temperature, possibly by encouraging a more synchronous reaction co-ordinate (vide infra). The presence of a dimethyl(phenyl)silyl substituent on the diene terminus causes a small decrease in reaction rate. However, the large silyl group has a dramatic influence on the endo:exo ratio, with comparative examples showing higher endo selectivity in all cases. Moreover, incorporation of silicon has added utility in providing an additional stereogenic centre in the product which may be exploited as a remote stereocontrol element or a latent hydroxy group through stereospecific silyl Baeyer-Villiger reaction. ${ }^{1,9}$

It is also relevant at this stage to comment on the proof of structure of the various products as other stereoisomers are possible. While we have not exhaustively carried out complete product analysis the tabulated data indicate reaction composition as observed by $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR analysis of the crude reaction media. In addition, the subsequent transitionstate analysis is in accord with the assigned products. Structure assignments follow from extensive spectroscopic and computational determinations or in certain cases through single-crystal X-ray analysis of later derivatives.

Scheme 5 Reagents and conditions: i, KH, benzene, $1 \mathrm{~h}, \mathbf{2 3}, 16 \mathrm{~h}$ (24, 53%); ii, 2% aq. acetone, PPTS, heat, $24 \mathrm{~h}(25,85 \%$); iii, propane-1,3diol, PPTS, benzene, heat, $16 \mathrm{~h} ; 2 \%$ aq. acetone, PPTS, heat, $24 \mathrm{~h}(\mathbf{2 6}$, 78%) (2 steps); iv, TBDMSOTf, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 30 \mathrm{~min}(7,95 \%$)

Fig. 1

For the cyclisation of triene $\mathbf{2}$ the relative stereochemistry of the major cycloadduct 28 was determined unequivocally through single-crystal X-ray analysis (Fig. 1) of a later derivative 41 obtained by the base-mediated intramolecular aldol condensation of the keto aldehyde 39 (Scheme 6). No attempt was made to isolate the minor component from the IMDA cyclisation of 2; however, the structure assignment given is in accord with both transition-state analysis and product distribution for other related examples.

The outcome of IMDA reaction of triene $\mathbf{3}$ conforms with our appreciation of the stereodirecting role of the $\mathrm{C}(3)$ silicon substituent. The relative stereochemistry of the major

Scheme 6 Reagents and conditions: i, acetic acid-THF-water (3:1:1), $55^{\circ} \mathrm{C}$, 16 h (39, 85%); ii, KOH, MeOH, 1 h (41, 57\%; 40, 31\%)

28
$H(5) \quad 3.52$, br $t, J 6.5 \mathrm{~Hz}$
$\mathrm{H}(6) 3.76, d, J 7.0 \mathrm{~Hz}$ $H(10) 5.09, d, J 4.3 \mathrm{~Hz}$

H(5) 3.25 , br t, J 5.5 Hz
H(6) $3.80, d, J 5.9 \mathrm{~Hz}$
$H(10) 4.91, \mathrm{dd}, J 1.9,4.8 \mathrm{~Hz}$

Fig. 2 Selected ${ }^{1}$ H NMR data for compounds 28 and 30
cycloadduct 30 in this system was assigned by $500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR homology to the cis-fused exo-product 28 from the cyclisation of triene 2. In particular, the observed chemical shifts and coupling constants of $\mathbf{H}(5), \mathbf{H}(6)$ and $\mathbf{H}(10)$ correlate well with the data for corresponding protons in the bicycle lacking silicon substitution at $\mathrm{C}(3)$ (Fig. 2).

Further evidence was available from comparison of the $\mathbf{H}(5)$, $\mathrm{H}(10)$ coupling constants of the major diastereoisomer $30\left(J_{5,10}\right.$ $4.8 \mathrm{~Hz})$ and the minor one $29\left\{\mathbf{H}(10)\right.$, br s, $\left.J_{5,10}<1 \mathrm{~Hz}\right\}$. Inspection of Drieding molecular models suggests the transfused endo-compound 29 to have a dihedral angle between $\mathrm{H}(5)$ and $\mathbf{H}(10)$ of near 90°, corresponding to a small vicinal coupling constant. In contrast, the reduced dihedral angle in the cis-fused exo-diastereoisomer 30 would suggest it to exhibit a larger coupling constant, as indeed is the case.

The minor cycloadduct 29 could not be obtained in pure form, thereby precluding its characterisation immediately after IMDA cyclisation. However, acid hydrolysis of the diastereoisomeric mixture of products in aqueous acetonitrile did afford the trans-fused bicyclic keto aldehyde 42, derived from the minor cycloadduct in pure form, along with the corresponding cis-fused isomer 43 (Scheme 7). Full relative stereochemical assignment of compound 42 was based on NOE data as summarised in Fig. 3.

Cyclisation of the tetrahydrofuran zonstrained diene 4 was rapid and afforded the cis-fused exo-adduct 32 as the major product. Selected NOE experiments (Fig. 4) pointed to a trans arrangement of $\mathrm{H}(5)$ and $\mathrm{H}(6)$ but were inconclusive concerning the configuration of $\mathrm{C}(4)$.

Nevertheless, the small coupling constant of 5.7 Hz between $H(5)$ and $H(6)$ correlated well with the corresponding value in the structurally related cis-fused cycloadduct $36\left(J_{5,6} 4.5 \mathrm{~Hz}\right)$, whereas the trans-fused bicycle 35 exhibits a much larger coupling constant ($J_{5,6} \quad 9.0 \mathrm{~Hz}$). ${ }^{8}$ Confirmation of this stereochemical assignment was obtained through single-crystal X-ray diffraction analysis (Fig. 5) of a subsequent compound, 46, derived from the major cycloadduct 32 (Scheme 8). Once again no direct evidence was obtained for the configuration of

Table 1
Starting
triene Conditions

[^0]

29

30
1

42

43

Scheme 7 Reagents and conditions: i, PTSA, 3% aq. acetone, heat, 45 $\min (42,40 \% ; 43,41 \%)$

42

Fig. 3 Selected NOE data for compound 42

32

Fig. 4 Selected NOE data for compound 32

46

45

DBN $=3,5$-dinitrobenzoyl
Scheme 8 Reagents and conditions: i, PTSA, 2% aq. acetone, heat, 4.5 h ($44,44 \%$); ii, ethylene glycol, PTSA, benzene, heat, $2 \mathrm{~h} \mathrm{(45} 63 \$,$%); iii, 3,5-$ dinitrobenzoyl chloride, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 30 \mathrm{~min}(46,77 \%)$
the minor cycloadduct 31 since it could not be separated and characterised. However, the assignment of the trans-fused structure follows from an analysis of reaction transition states (vide infra) and from evidence arising from the cyclisation of similar analogues.

The relative stereochemical assignment of the products arising from the IMDA cyclisation of trienes 5 and 6 may be found in preceding publications. ${ }^{1,8}$ The stereochemistry of the

Fig. 5

35
H(5) 3.29 , br d, J 9.0 Hz $H(6) 4.83, d, J 9.0 \mathrm{~Hz}$

H(5) 3.02 , br d, $J 8.9 \mathrm{~Hz}$
H(6) $4.77, d, J 8.9 \mathrm{~Hz}$

Fig. 6 Selected ${ }^{1} \mathrm{H}$ NMR data for compounds 35 and 37
major cycloadduct 37 arising from cyclisation of substrate 7 follows from ${ }^{1} \mathrm{H}$ NMR homology with compound 35 . In particular, a coupling constant of 8.9 Hz between (5) H and (6) H is in good agreement with that of 9.0 Hz observed for 35 (Fig. 6). Once more the minor cycloadduct was not isolated, its presence being inferred from $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR analysis of the crude reaction medium and its stereochemistry from transition-state analysis and product distribution for related examples.

As regards the discussion of the transition-state geometries leading to the IMDA products, it is clear that our earlier picture ${ }^{8}$ is insufficiently sophisticated to account for the current results, although the general guidelines originally delineated remain pertinent. First, Alder's endo-rule ${ }^{5}$ is of limited predictive value for intramolecular reactions unless low temperatures and Lewis acid catalysis are employed. ${ }^{10}$ Brown and Houk ${ }^{7}$ have reported that the IMDA cyclisation of nona-$1,3,8$-trienes with electron-donating groups at $C(2)$ and -withdrawing ones at $\mathrm{C}(8)$ proceeds with advanced peripheralbond formation leading to preferred cis-fused exo-products. Such reactions are critically dependent upon frontier orbital considerations, which encourage advanced peripheral-bond formation, and upon the counteracting influence of the tethering chain, which encourages advanced internal-bond formation. The fact that intramolecular cyclisation of trienes $\mathbf{2}$ and $\mathbf{4}$ gives a similar endo:exo ratio, strongly favouring the exo-product, suggests comparable electronic properties and favoured transition states. In contrast, the triene 6 shows reversed selectivity
indicating different transition-state properties. The origin of this disparity lies in the presence of a methyl group at $\mathrm{C}(3)$ in the conformationally flexible diene portion of compound 6. Molecular mechanics calculations indicate that $A_{1.2}$ strain between this methyl substituent and the neighbouring $\mathbf{C}(2)$ siloxy group causes the diene to twist out of plane by as much as $20-30^{\circ} .^{11}$ Hence a more pronounced asynchronous reaction coordinate is possible, the extreme case of which would represent a double Michael addition. By comparison, the reduced $A_{1,2}$ strain in the diene portion of 2 and the constraints imposed by furan annulation in 4 encourage a more planar diene arrangement in these cases and hence a correspondingly more synchronous reaction profile. An inspection of the tabulated results reveals that the large dimethyl(phenyl)silyl group significantly alters the outcome of all examples in which it participates, in certain cases even overturning the inherent diastereoselection bias. For example, compare entry 1 with a 1:10 endo:exo ratio to entry 2 which has only a $1: 3: 4$ ratio. For entry 3 the initial $1: 8$ endo:exo ratio is reversed with respect to its silicon-substituted analogue, entry 4 , for which a 2.4:1 ratio is observed. Comparison of entries 5 and 6 shows a significant increase in endo selectivity for 2.1:1 to greater than 12:1; this highly pleasing result would have been of great importance to us during our earlier model studies had we recognised the power of the dimethyl(phenyl)silyl group as a stereocontrol element.
In order to account for the observed product distributions a careful transition-state analysis is needed. The presence of a stereogenic centre in the linking tether means that the diene π faces are diastereoisotropic and consequently a minimum of four transition states must be considered (Scheme 9).

Scheme 9 Intramolecular Diels-Alder reaction transition-state analysis

Transition states C and D both encounter highly unfavourable steric interactions involving the large dithianesubstituted side-chain and consequently are disfavoured in all cases. For more synchronous reaction co-ordinates the presence of $A_{1,3}$ strain and transannular interactions in transition state \mathbf{A} means that this is less populated than \mathbf{B} in which only developing pseudo 1,3 -diaxial interactions are encountered. Hence, precursors having planar diene portions, e.g. 2, 3 and 4, give predominantly cis-fused exo-cycloadducts via transition state B. For less synchronous reaction co-ordinates advanced peripheral-bond exerts a torque about the newly forming bond
as shown in Scheme 9. In the case of species A this reduces the $\mathrm{C}(1)-\mathrm{C}(9)$ dihedral angle attenuating both $A_{1,3}$ strain and unfavourable transannular interactions. For \mathbf{B} twist asynchronicity increases the $\mathrm{C}(1)-\mathrm{C}(9)$ dihedral angle, introducing $A_{1.3}$ strain into the transition state. Hence, for non-planar dienes whose reaction co-ordinates display pronounced asynchronicity cyclisation mode A is predominant. In all cases the large $\mathrm{C}(9)$ dienophile substituent $\mathrm{X}=\mathrm{PhMe}_{2} \mathrm{Si}$ favours endo over exo transition states.

In conclusion, we have shown that small changes in diene substitution patterns can have a drastic influence on the stereochemical outcome of IMDA reactions and that this effect can be overcome to a greater or lesser extent by employing a large silicon substituent suitably placed in the dienophile portion. To the best of our knowledge these results represent the first rational usage of twist asynchronicity to govern product stereochemistry and also of a large silicon dienophile substituent in the IMDA reaction. Studies are currently underway to explore the use of the latter control element in intermolecular Diels-Alder reactions.

Experimental

General. $-{ }^{1} \mathrm{H}$ NMR spectra were recorded in CDCl_{3} unless otherwise stated, at 90,270 or 500 MHz on JEOL FX 90Q, JEOL GFX 270 or Bruker AM 500 spectrometers, respectively. Residual protic solvent, i.e., $\mathrm{CHCl}_{3}\left(\delta_{\mathrm{H}} 7.26\right)$ or $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}\left(\delta_{\mathrm{H}}\right.$ 7.20), was used as internal reference. For clarity natural product (steroid) numbering is used and qualified diagramatically in the Results and Discussion section; however, IUPAC conventions are adopted throughout the Experimental section. Coupling constants (J) were measured in $\mathrm{Hz} .{ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} unless otherwise stated, at 125.8 MHz on a Bruker AM 500 spectrometer using the resonances of $C \mathrm{DCl}_{3}$ ($\delta_{\mathrm{C}} 77.0, \mathrm{t}$) or $C_{6} \mathrm{D}_{6}\left(\delta_{\mathrm{c}} 128.0, \mathrm{t}\right)$ as internal reference. IR spectra were recorded on a Perkin-Elmer 983G spectrometer. Mass spectra were recorded under EI conditions, unless otherwise stated, using VG-7070B, VG 12-253, Autospec O and VG ZAB-E instruments. Microanalyses were performed in the Imperial College Chemistry Department microanalytical laboratory and by MEDAC Ltd. at the Department of Chemistry, Brunel University. M.p.s were determined on a Reichert hot-stage apparatus and are uncorrected. Optical rotations (units: $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$) were measured with an Optical Activity AA-1000 polarimeter using acid- and ethanolfree CHCl_{3} as solvent unless otherwise stated. Molecular modelling was performed using the Tektronix CAChe system. Flash column chromatography was performed using Merck Kieselgel 60 ($230-400$ mesh) unless otherwise stated. Preparative HPLC was performed on a Dynamax Macro Si column. Florisil refers to $230-300$ US mesh Florisil as supplied by BDH Ltd. Diethyl ether and tetrahydrofuran (THF) were distilled from sodium-benzophenone ketyl; dichloromethane from phosphorus pentaoxide; toluene from sodium; acetonitrile from calcium hydride; and methanol from magnesium. Light petroleum refers to the fraction boiling in the range $40-60^{\circ} \mathrm{C}$, which was distilled prior to use as was ethyl acetate. Other solvents and reagents were purified by standard procedures as necessary. Analytical TLC was performed using pre-coated glass-backed plates (Merck Kieselgel $60 \mathrm{~F}_{254}$) and compounds were visualised by acidic ammonium molybdate(iv) or iodine as appropriate.

Crystal Data for Methyl 6-Hydroxy-5-oxoperhydronaphtho-[1,8-bc] furan-8-spiro-2'-(1', 3^{\prime}-dithiane)-2a-carboxylate 41.Single crystals suitable for analysis were grown from diethyl ether-light petroleum. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~S}_{2}, \mathrm{M}=358.5$, monoclinic, $a=11.795(2), b=11.167(2), c=13.636(2) \AA, \beta=108.31(1)^{\circ}$,

Table 2 Atom co-ordinates ($\times 10^{4}$) with estimated standard deviations in parentheses for compound 41

$\mathrm{O}(1)$	$2472(2)$	$6865(2)$	$316(1)$
$\mathrm{C}(1)$	$2935(2)$	$5930(2)$	$685(2)$
$\mathrm{C}(2)$	$2240(2)$	$4894(2)$	$890(2)$
$\mathrm{C}(3)$	$2618(2)$	$4641(2)$	$2051(2)$
$\mathrm{C}(4)$	$3964(2)$	$4373(2)$	$2490(2)$
$\mathrm{C}(5)$	$4706(2)$	$5300(2)$	$2138(2)$
$\mathrm{C}(6)$	$4742(2)$	$6314(2)$	$2887(2)$
$\mathrm{O}(6)$	$4974(1)$	$5733(1)$	$3860(1)$
$\mathrm{C}(7)$	$5628(2)$	$7285(2)$	$2845(2)$
$\mathrm{C}(8)$	$5178(2)$	$7749(2)$	$1715(2)$
$\mathrm{C}(9)$	$4996(2)$	$6799(2)$	$867(2)$
$\mathrm{O}(9)$	$6101(2)$	$6330(2)$	$830(2)$
$\mathrm{C}(10)$	$4256(2)$	$5726(2)$	$1016(2)$
$\mathrm{S}(1)$	$5526(1)$	$8613(2)$	$3601(1)$
$\mathrm{C}(11)$	$6283(3)$	$8184(2)$	$4917(2)$
$\mathrm{C}(12)$	$7566(3)$	$7812(3)$	$5112(2)$
$\mathrm{C}(13)$	$7678(2)$	$6678(3)$	$4547(2)$
$\mathrm{S}(2)$	$7172(1)$	$6780(1)$	$3143(1)$
$\mathrm{C}(28)$	$4423(2)$	$4579(2)$	$3678(2)$
$\mathrm{C}(29)$	$4255(2)$	$3106(2)$	$2250(2)$
$\mathrm{O}(29)$	$5054(2)$	$2827(2)$	$1941(2)$
$\mathrm{O}(30)$	$3506(2)$	$2324(2)$	$2425(2)$
$\mathrm{C}(30)$	$3697(4)$	$1079(2)$	$2240(3)$

Table 3 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for compound 41 with esds in parentheses

$\mathrm{O}(1)-\mathrm{C}(1)$	$1.212(3)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.493(4)$
$\mathrm{C}(1)-\mathrm{C}(10)$	$1.497(3)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.530(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.541(3)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.528(3)$
$\mathrm{C}(4)-\mathrm{C}(28)$	$1.555(3)$	$\mathrm{C}(4)-\mathrm{C}(29)$	$1.515(3)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.517(3)$	$\mathrm{C}(5)-\mathrm{C}(10)$	$1.528(3)$
$\mathrm{C}(6)-\mathrm{O}(6)$	$1.425(3)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.519(3)$
$\mathrm{O}(6)-\mathrm{C}(28)$	$1.430(3)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.552(3)$
$\mathrm{C}(7)-\mathrm{S}(1)$	$1.832(2)$	$\mathrm{C}(7)-\mathrm{S}(2)$	$1.826(2)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.534(3)$	$\mathrm{C}(9)-\mathrm{O}(9)$	$1.420(4)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.534(4)$	$\mathrm{S}(1)-\mathrm{C}(11)$	$1.800(2)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.510(4)$	$\mathrm{C}(12-\mathrm{C}(13)$	$1.509(4)$
$\mathrm{C}(13)-\mathrm{S}(2)$	$1.821(3)$		
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$122.9(2)$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(10)$	$123.1(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	$114.0(2)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$109.8(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$111.6(2)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$111.6(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(28)$	$110.8(2)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(28)$	$100.4(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(29)$	$111.9(2)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(29)$	$112.0(2)$
$\mathrm{C}(28)-\mathrm{C}(4)-\mathrm{C}(29)$	$109.6(2)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$101.1(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	$118.2(2)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	$111.7(2)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(6$	$104.1(2)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$112.4(2)$
$\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{C}(7)$	$115.3(2)$	$\mathrm{C}(6)-\mathrm{O}(6)-\mathrm{C}(28)$	$107.8(1)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$104.5(2)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{S}(1)$	$112.9(2)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{S}(1)$	$103.0(1)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{S}(2)$	$114.9(1)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{S}(2)$	$109.3(2)$	$\mathrm{S}(1)-\mathrm{C}(7)-\mathrm{S}(2)$	$111.2(1)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$116.1(2)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(9)$	$111.7(2)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$113.0(2)$	$\mathrm{O}(9)-\mathrm{C}(9)-\mathrm{C}(10)$	$106.5(2)$
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(5)$	$110.5(2)$	$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	$115.0(2)$
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	$110.0(2)$	$\mathrm{C}(7)-\mathrm{S}(1)-\mathrm{C}(11)$	$104.2(1)$
$\mathrm{S}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$113.8(2)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$112.6(2)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{S}(2)$	$115.6(2)$	$\mathrm{C}(7)-\mathrm{S}(2)-\mathrm{C}(13)$	$103.2(1)$
$\mathrm{C}(4)-\mathrm{C}(28)-\mathrm{O}(6)$	$107.7(2)$		

$V=1704 \AA^{3}$, space group $P 2_{1} / a$, No. $14, Z=4, D_{c}=1.40$ $\mathrm{g} \mathrm{cm}^{-3}$. Cu radiation, $\lambda=1.54178 \AA, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=30 \mathrm{~cm}^{-1}$ $F(000)=760$. Data were measured on a Nicolet R3m diffractometer with $\mathrm{Cu}-\mathrm{K} \propto$ radiation (graphite monochromator) using ω scans. 2304 Independent reflections $\left(2 \theta \leq 116^{\circ}\right)$ were measured, of which 2157 had $\left|F_{\mathrm{o}}\right|>3 \sigma\left(\left|F_{\mathrm{o}}\right|\right)$, and were considered to be observed. The data were corrected for Lorentz

[^1]and polarisation factors; no absorption correction was applied. The structure was solved by direct methods. The non-hydrogen atoms were refined anisotropically. The bridgehead and hydroxy protons on $\mathrm{C}-5, \mathrm{C}-6, \mathrm{C}-10$ and $\mathrm{O}-9$ were located from a ΔF map and refined isotropically. The positions of the remaining hydrogen atoms were idealised, $\mathrm{C}-\mathrm{H}=0.96 \AA$, assigned isotropic thermal parameters, $U(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$, and allowed to ride on their parent carbon atoms. The methyl group was refined as a rigid body. Refinement was by block-cascade full-matrix least-squares to $R=0.039, R_{w}=0.045\left[w^{-1}=\right.$ $\sigma^{2}(F)+0.00041 F^{2}$]. The maximum and minimum residual electron densities in the final ΔF map were 0.26 and $-0.22 \mathrm{e}^{-3}{ }^{-3}$, respectively. The mean and maximum shift/error in the final refinement were 0.003 and 0.012 , respectively. Computations were carried out on an Eclipse S140 computer using the SHELXTL program system. ${ }^{12}$ Atomic co-ordinates and selected bond lengths and angles are given in Tables 2 and 3.*

Crystal Data for (2aR*,4aR*,7aR*, $\left.8 \mathrm{R}^{*}, 10 \mathrm{aR}^{*}, 10 \mathrm{bR}^{*}\right)$ Methyl 4a-[2-(3,5-Dinitrobenzoyloxy)ethoxy]-8-hydroxyperhydronaphtho $\left[1,8-\mathrm{bc}: 5,4 \mathrm{a}-\mathrm{b}^{\prime}\right]$ difuran-10-spiro-2'-($1^{\prime}, 3^{\prime}-$ dithiane)-2a-carboxylate 46.-Single crystals suitable for analysis were grown from ethyl acetate. $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S}_{2}, \mathrm{M}=$ 640.7, monoclinic, $a=10.102(2), b=8.934(2), c=31.196(6) \AA$, $\beta=94.43(2)^{\circ}, V=2810 \AA^{3}$, space group $P 2_{1} / n$, No. $14, Z=4$, $D_{\mathrm{c}}=1.51 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{Cu}$ radiation, $\lambda=1.54178 \AA, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=$ $23 \mathrm{~cm}^{-1}, F(000)=1344$. Data were measured on a Nicolet R3m diffractometer with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation (graphite monochromator) using ω scans. A crystal of dimensions $0.13 \times 0.33 \times 0.37 \mathrm{~mm}$ was used. 3792 Independent reflections $\left[2 \theta \leqslant 116^{\circ}\right]$ were measured of which 3388 had $\left|F_{\mathrm{o}}\right|>3 \sigma\left(\left|F_{\mathrm{o}}\right|\right)$, and were considered to be observed. The data were corrected for Lorentz and polarisation factors; no absorption correction was applied. The structure was solved by direct methods and the nonhydrogen atoms were refined anisotropically. The bridgehead protons on C-5 and C-6, and the hydroxy proton on O-9, were located from a ΔF map and refined isotropically. The positions of the remaining hydrogen atoms were idealised, $\mathrm{C}-\mathrm{H}=0.96 \AA$, assigned isotropic thermal parameters, $U(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$, and allowed to ride on their parent carbon atoms. The methyl group was refined as a rigid body. Refinement was by block-cascade full-matrix least-squares to $R=0.046, R_{w}=0.052\left[w^{-1}=\right.$ $\left.\sigma^{2}(F)+0.00054 F^{2}\right]$. The maximum and minimum residual electron densities in the final ΔF map were 0.59 and $-0.27 \mathrm{e}_{\AA^{-3}}$, respectively. The mean and maximum shift/error in the final refinement were 0.029 and 0.224 , respectively. Computations were carried out on an Eclipse S140 computer using the SHELXTL program system. ${ }^{12}$ Atomic co-ordinates and selected bond lengths and angles are given in Tables 4 and 5.*
(E)-Methyl 4,4-(Ethylenedioxy)pentenoate.-A mixture of (E)-methyl 4-oxopentenoate ($11.7 \mathrm{~g}, 91.3 \mathrm{mmol}$), ethylene glycol ($27 \mathrm{~cm}^{3}, 0.5 \mathrm{~mol}$) and pyridinium toluene- p-sulfonate (PPTS) ($2.43 \mathrm{~g}, 9.7 \mathrm{mmol}$) in anhydrous benzene $\left(150 \mathrm{~cm}^{3}\right.$) was heated at reflux with azeotropic removal of water for 36 h . After cooling, the mixture was poured into saturated aq. sodium hydrogen carbonate ($200 \mathrm{~cm}^{3}$), then extracted with diethyl ether ($4 \times 200 \mathrm{~cm}^{3}$), and the combined extracts were washed successively with saturated aq. sodium hydrogen carbonate ($100 \mathrm{~cm}^{3}$), water ($200 \mathrm{~cm}^{3}$) and brine ($200 \mathrm{~cm}^{3}$) and dried over anhydrous magnesium sulfate. Concentration gave an oil, which was purified by flash chromatography (gradient elution, 30$50 \%$ diethyl ether-light petroleum) to give the title ketal (13.99 $\mathrm{g}, 89 \%$) as an oil (Found: C, 55.7; H, 7.2. $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{4}$ requires C, $55.81 ; \mathrm{H}, 7.02 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2989,2953,2890,1723,1660$, $1434,1374,1306,1203,1168,1040,866$ and $725 ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.48\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}_{3}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.85-3.87(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.97-3.99\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 6.07(1 \mathrm{H}, \mathrm{d}$,

Table 4 Atom co-ordinates $\left(\times 10^{4}\right)$ with estimated standard deviations in parentheses for compound 46

O(1)	$2912(2)$	$8087(2)$	$8760(1)$
$\mathrm{C}(1)$	$3669(3)$	$7625(3)$	$8417(1)$
$\mathrm{C}(2)$	$2782(3)$	$6837(4)$	$8064(1)$
$\mathrm{C}(3)$	$3527(3)$	$5710(4)$	$7804(1)$
$\mathrm{C}(4)$	$4128(3)$	$4433(3)$	$8082(1)$
$\mathrm{C}(5)$	$4558(3)$	$4969(3)$	$8536(1)$
$\mathrm{C}(6)$	$3448(3)$	$4402(3)$	$8810(1)$
$\mathrm{O}(6)$	$3111(2)$	$2972(2)$	$8629(1)$
$\mathrm{C}(7)$	$3890(3)$	$4381(3)$	$9286(1)$
$\mathrm{C}(8)$	$4230(3)$	$6040(3)$	$9394(1)$
$\mathrm{C}(9)$	$5156(3)$	$6848(3)$	$9100(1)$
$\mathrm{O}(9)$	$6490(2)$	$6340(3)$	$9187(1)$
$\mathrm{C}(10)$	$4834(3)$	$6637(3)$	$8605(1)$
$\mathrm{C}(19)$	$6005(3)$	$7280(4)$	$8362(1)$
$\mathrm{C}\left(9^{\prime}\right)$	$5633(3)$	$8903(4)$	$8313(1)$
$\left.\mathrm{O}(1)^{\prime}\right)$	$4228(2)$	$8895(3)$	$8222(1)$
$\mathrm{S}\left(1^{\prime}\right)$	$2546(1)$	$3980(1)$	$9640(1)$
$\mathrm{C}\left(1^{\prime}\right)$	$2289(3)$	$1985(4)$	$9580(1)$
$\mathrm{C}\left(2^{\prime}\right)$	$3511(3)$	$1054(4)$	$9686(1)$
$\mathrm{C}\left(3^{\prime}\right)$	$4613(3)$	$1322(4)$	$9385(1)$
$\mathrm{S}\left(3^{\prime}\right)$	$5322(1)$	$3185(1)$	$9414(1)$
$\mathrm{C}(11)$	$5313(3)$	$3723(4)$	$7862(1)$
$\mathrm{O}(11)$	$6386(3)$	$3548(5)$	$8029(1)$
$\mathrm{O}(12)$	$4995(2)$	$3356(3)$	$7468(1)$
$\mathrm{C}(12)$	$6035(4)$	$2661(5)$	$7242(1)$
$\mathrm{C}(13)$	$1802(3)$	$9029(3)$	$8670(1)$
$\mathrm{C}(14)$	$804(3)$	$8656(3)$	$8994(1)$
$\mathrm{O}(14)$	$306(2)$	$7177(3)$	$8888(1)$
$\mathrm{C}(15)$	$-226(3)$	$6379(4)$	$9203(1)$
$\mathrm{O}(15)$	$-363(3)$	$6843(3)$	$9556(1)$
$\mathrm{C}(16)$	$-622(3)$	$4861(4)$	$9050(1)$
$\mathrm{C}(17)$	$-1032(3)$	$3830(4)$	$9348(1)$
$\mathrm{C}(18)$	$-1402(3)$	$2426(4)$	$9208(1)$
$\mathrm{N}(18)$	$-1810(3)$	$1310(4)$	$9524(1)$
$\mathrm{O}(18)$	$-1861(4)$	$1731(4)$	$9894(1)$
$\mathrm{O}(19)$	$-2131(3)$	$53(3)$	$9389(1)$
$\mathrm{C}(20)$	$-1402(3)$	$1988(4)$	$8786(1)$
$\mathrm{C}(21)$	$-962(3)$	$3023(4)$	$8499(1)$
$\mathrm{N}(21)$	$-923(3)$	$2582(3)$	$8045(1)$
$\mathrm{O}(21)$	$-1223(3)$	$1307(3)$	$7945(1)$
$\mathrm{O}(22)$	$-573(3)$	$3517(3)$	$7792(1)$
$\mathrm{C}(23)$	$-586(3)$	$4444(4)$	$8621(1)$
$\mathrm{C}(28)$	$3110(3)$	$3165(4)$	$8174(1)$

$J 15.6,2-\mathrm{H}$) and $6.76(1 \mathrm{H}, \mathrm{d}, J 15.6,3-\mathrm{H}) ; m / z(\mathrm{EI}) 172\left(\mathrm{M}^{+}\right), 157$ $\left(\mathrm{M}-\mathrm{CH}_{3}\right), 141(\mathrm{M}-\mathrm{OMe}), 113\left(\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right), 87$ and 43.
(E)-4,4-(Ethylenedioxy)pent-2-en-1-ol.--Lithium aluminium hydride $(0.986 \mathrm{~g}, 26.0 \mathrm{mmol})$ was added portionwise to a stirred solution of (E)-methyl 4,4-(ethylenedioxy)pentenoate (1.152 g , 6.69 mmol) in anhydrous diethyl ether ($40 \mathrm{~cm}^{3}$) at $-52^{\circ} \mathrm{C}$ during ca. 15 min . The mixture was stirred at $-50^{\circ} \mathrm{C}$ for 25 min and was then allowed to warm to $0^{\circ} \mathrm{C}$. The remaining reagent was quenched by careful dropwise addition of water $\left(1 \mathrm{~cm}^{3}\right)$ followed by aq. sodium hydroxide ($3 \mathrm{~cm}^{3} ; 3 \mathrm{~mol} \mathrm{dm}^{-3}$) and then further water ($1 \mathrm{~cm}^{3}$). Further diethyl ether $\left(40 \mathrm{~cm}^{3}\right)$ was also added. The mixture was stirred and allowed to warm to room temperature during 150 min . The solid was filtered off and the residue was washed with copious quantities of diethyl ether. Concentration and purification of the residue by flash chromatography with diethyl ether as eluant gave the title alcohol $(0.708 \mathrm{~g}, 73 \%)$ as an oil (Found: C, $58.25 ; \mathrm{H}, 8.5$. $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{3}$ requires C, $58.32 ; \mathrm{H}, 8.39 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3414$, 2984, 2886, 1672, 1374, 1210, 1082, 1039, 978, 910 and 861; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 1.46\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}_{3}\right), 1.63(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, $3.92\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.17\left(2 \mathrm{H}\right.$, br t, $\left.J 5.0,1-\mathrm{H}_{2}\right), 5.68(1$ $\mathrm{H}, \mathrm{dt}, J 15.6,1.7,3-\mathrm{H}$) and $5.97(1 \mathrm{H}, \mathrm{dt}, J 15.6,5.1,2-\mathrm{H}) ; m / z$ (EI) $143(\mathrm{M}-\mathrm{H}), 129,113,87,85$ and 43.
(E)-4,4-(Ethylenedioxy)pent-2-enal 8.-Preactivated $\mathbf{M n O}_{2}$ $(3.26 \mathrm{~g}, 37.5 \mathrm{mmol})$ was added to a solution of $(E)-4,4-$

Table 5 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for compound 46 with esds in parentheses

$\mathrm{O}(1)-\mathrm{C}(1)$	$1.416(3)$	$\mathrm{C}(1)-\mathrm{C} 2)$	$1.544(4)$
$\mathrm{C}(1)-\mathrm{C}(10)$	$1.558(4)$	$\mathrm{C}(1)-\mathrm{O}\left(19^{\prime}\right)$	$1.420(4)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.521(5)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.536(4)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.533(4)$	$\mathrm{C}(4)-\mathrm{C}(11)$	$1.551(4)$
$\mathrm{C}(4)-\mathrm{C}(28)$	$1.576(4)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.536(4)$
$\mathrm{C}(5)-\mathrm{C}(10)$	$1.529(4)$	$\mathrm{C}(6)-\mathrm{O}(6)$	$1.430(3)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.523(4)$	$\mathrm{O}(6)-\mathrm{C}(28)$	$1.429(3)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.554(4)$	$\mathrm{C}(7)-\mathrm{S}\left(1^{\prime}\right)$	$1.836(3)$
$\mathrm{C}(7)-\mathrm{S}\left(3^{\prime}\right)$	$1.823(3)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.530(4)$
$\mathrm{C}(9)-\mathrm{O}(9)$	$1.432(3)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.572(4)$
$\mathrm{C}(10)-\mathrm{C}(19)$	$1.554(4)$	$\mathrm{C}(19)-\mathrm{C}\left(19^{\prime}\right)$	$1.503(5)$
$\mathrm{C}\left(19^{\prime}\right)-\mathrm{O}\left(19^{\prime}\right)$	$1.430(4)$	$\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	$1.809(3)$
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	$1.508(5)$	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	$1.518(5)$
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{S}\left(3^{\prime}\right)$	$1.812(3)$		
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$110.8(2)$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(10)$	$108.0(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	$113.8(2)$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}\left(19^{\prime}\right)$	$109.7(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}\left(19^{\prime}\right)$	$106.8(2)$	$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{O}\left(19^{\prime}\right)$	$107.6(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$113.4(3)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$112.4(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$111.7(2)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(11)$	$110.0(2)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(11)$	$110.7(2)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(28)$	$113.5(2)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(28)$	$102.1(2)$	$\mathrm{C}(11)-\mathrm{C}(4)-\mathrm{C}(28)$	$108.5(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$103.6(2)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	$118.2(2)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	$112.1(2)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(6)$	$103.8(2)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$111.4(2)$	$\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{C}(7)$	$115.0(2)$
$\mathrm{C}(6)-\mathrm{O}(6)-\mathrm{C}(28)$	$105.7(2)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$104.4(2)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{S}\left(1^{\prime}\right)$	$113.8(2)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{S}\left(1^{\prime}\right)$	$102.5(2)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{S}\left(3^{\prime}\right)$	$113.8(2)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{S}\left(3^{\prime}\right)$	$110.4(2)$
$\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}(7)-\mathrm{S}\left(3^{\prime}\right)$	$111.0(1)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$117.0(2)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(9)$	$109.8(2)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$115.8(2)$
$\mathrm{O}(9)-\mathrm{C}(9)-\mathrm{C}(10)$	$106.5(2)$	$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(5)$	$111.9(2)$
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	$114.2(2)$	$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	$106.2(2)$
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(19)$	$100.8(2)$	$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(19)$	$115.5(2)$
$\mathrm{C}(7)-\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	$103.7(1)$	$\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	$114.2(2)$
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	$113.5(2)$	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{S}\left(3^{\prime}\right)$	$114.6(2)$
$\mathrm{C}(7)-\mathrm{S}\left(3^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	$102.8(1)$		

(ethylenedioxy)pent-2-en-1-ol ($0.676 \mathrm{~g}, 4.69 \mathrm{mmol}$) in anhydrous dichloromethane ($40 \mathrm{~cm}^{3}$). The resulting suspension was stirred for 18 h and further $\mathrm{MnO}_{2}(1.6 \mathrm{~g})$ was added. The mixture was stirred for 24 h . Filtration through a pad of Celite, washing of the filter with dichloromethane, and evaporation of the solvent and washings under reduced pressure gave the aldehyde 8 (0.498 $\mathrm{g}, 75 \%$) as an oil which required no further purification (Found: $\mathrm{C}, 59.3 ; \mathrm{H}, 7.3 . \mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{3}$ requires $\mathrm{C}, 59.15 ; \mathrm{H}, 7.09 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 2989,2890,2823,1691,1474,1443,1374,1216$, $1168,1127,1086,1037$ and $981 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.54$ (3 $\left.\mathrm{H}, \mathrm{s}, 5-\mathrm{H}_{3}\right), 3.87-3.92\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.99-4.04(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 6.31(1 \mathrm{H}, \mathrm{dd}, J 15.7,7.9,2-\mathrm{H}), 6.64(1 \mathrm{H}, \mathrm{d}, J 15.7$, $3-\mathrm{H})$ and $9.61(1 \mathrm{H}, \mathrm{d}, J 7.8,1-\mathrm{H})$; m / z (EI) $142\left(\mathrm{M}^{+}\right), 127$ $\left(\mathrm{M}-\mathrm{CH}_{3}\right), 113(\mathrm{M}-\mathrm{CHO})$ and $99\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}\right)$.
(E)-1-[2'-($2^{\prime \prime}, 2^{\prime \prime}$-Dimethoxyethyl) $-1^{\prime}, 3^{\prime}-$ dithian- $\left.2^{\prime}-y l\right]-4,4-$ (ethylenedioxy)pent-2-en-1-ol 10.-BuLi ($2.4 \mathrm{~cm}^{3}$ of a 2.5 mol dm^{-3} solution in hexanes, 6.0 mmol) was added dropwise to a stirred solution of the dithiane $9(1.25 \mathrm{~g}, 6.0 \mathrm{mmol})$ and anhydrous $N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine (TMEDA) $(0.9,6.0 \mathrm{mmol})$ in anhydrous THF $\left(30 \mathrm{~cm}^{3}\right)$ at $-30^{\circ} \mathrm{C}$. The yellow solution was stirred for 90 min at $-30^{\circ} \mathrm{C}$ and was then cooled to $-95^{\circ} \mathrm{C}$. A solution of the enal $8(0.426 \mathrm{~g}, 3.0 \mathrm{mmol})$ in THF ($4 \mathrm{~cm}^{3},+2 \mathrm{~cm}^{3}$, rinse) was added via cannula. After 15 min , a solution of acetic acid in dry THF ($3.4 \mathrm{~cm}^{3} ; 10 \% \mathrm{w} / \mathrm{v}$) was added dropwise and the mixture was allowed to warm to room temperature during 40 min . The flask contents were added to water ($100 \mathrm{~cm}^{3}$) and extracted with diethyl ether ($4 \times 100 \mathrm{~cm}^{3}$). The combined organic layers were washed successively with water ($100 \mathrm{~cm}^{3}$) and brine ($100 \mathrm{~cm}^{3}$), then dried over anhydrous magnesium sulfate. Concentration and purification of the residue by flash chromatography (gradient elution, 20-60\%
diethyl ether-light petroleum) gave the alcohol 10 ($0.975 \mathrm{~g}, 93 \%$) as an oil (Found: $\mathrm{C}, 51.2 ; \mathrm{H}, 7.6 . \mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{~S}_{2}$ requires $\mathrm{C}, 51.40$; $\mathrm{H}, 7.48 \%$); $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3453,2983,2932,2894,2829,1439$, $1422,1373,1278,1208,1071,1041,977,949,864$ and 742 ; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.49\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}_{3}\right), 1.91-2.02\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\right.$ $\left.\mathrm{H}_{2}\right), 2.07\left(1 \mathrm{H}, \mathrm{dd}, J 15.2,3.6,1^{\prime \prime}-\mathrm{H}\right), 2.23(1 \mathrm{H}, \mathrm{dd}, J 15.2,5.8$, $\left.1^{\prime \prime}-\mathrm{H}\right), 2.69-2.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~S}\right), 2.85-2.94\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~S}\right), 3.33$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.35(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.45(1 \mathrm{H}, \mathrm{d}, J 4.1, \mathrm{OH}), 3.88-$ 3.98 ($4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $4.48\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 5.2,2^{\prime \prime}-\mathrm{H}\right), 4.78$ (1 $\mathrm{H}, \mathrm{dd}, J 5.7,3.6,1-\mathrm{H}), 5.82(1 \mathrm{H}, \mathrm{d}, J 15.5,3-\mathrm{H})$ and $6.12(1 \mathrm{H}, \mathrm{dd}$, $J 15.5,5.1,2-\mathrm{H}) ; m / z(\mathrm{EI}) 350\left(\mathrm{M}^{+}\right), 318(\mathrm{M}-\mathrm{MeOH}), 303$, 287, 259, 207, 176 and 75.
(E)-Methyl $2-\left\{1^{\prime}-\left[2^{\prime \prime}-\left(2^{\prime \prime \prime}, 2^{\prime \prime \prime}\right.\right.\right.$-Dimethoxyethyl $)-1^{\prime \prime}, 3^{\prime \prime}$-dithian$\left.2^{\prime \prime}-y l\right]-4^{\prime}, 4^{\prime}$-(ethylenedioxy)pent-2'-enyloxymethyl $\}$ propenoate 11.-A solution of the alcohol $10(0.958 \mathrm{~g}, 2.74 \mathrm{mmol})$ in benzene ($5 \mathrm{~cm}^{3},+2 \mathrm{~cm}^{3}$ rinse) was added via cannula to a stirred suspension of KH $(0.470 \mathrm{~g}$, of a 35% dispersion in mineral oil, 4.11 mmol) in anhydrous benzene $\left(25 \mathrm{~cm}^{3}\right)$. A yellow colour was produced and the mixture was stirred at room temperature for 1 h . Methyl 2-(bromomethyl)propenoate $\left(1.25 \mathrm{~cm}^{3}, 11.0 \mathrm{mmol}\right)$ was added via syringe. The colour discharged over a period of $2-3 \mathrm{~min}$ and a precipitate formed. After a further 10 min the reaction was quenched by careful addition of saturated aq. ammonium chloride (6 drops), followed 10 min later by saturated aq. sodium hydrogencarbonate ($30 \mathrm{~cm}^{3}$) and water ($30 \mathrm{~cm}^{3}$). Extraction with diethyl ether ($4 \times 50 \mathrm{~cm}^{3}$) and washing of the combined organic layers successively with water $\left(30 \mathrm{~cm}^{3}\right)$ and brine $\left(50 \mathrm{~cm}^{3}\right)$, followed by drying over anhydrous magnesium sulfate and evaporation of the solvent, gave a yellow oil. Purification by flash chromatography (gradient elution, $30-60 \%$ diethyl ether-light petroleum) gave the ether $11(0.800 \mathrm{~g}, 65 \%$) as an oil (Found: C, $53.4 ; \mathrm{H}, 7.1 . \quad \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{~S}_{2}$ requires $\mathrm{C}, 53.55 ; \mathrm{H}, 7.19 \%$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2984,2948,2829,1720,1633,1437,1372,1306$, $1276,1198,1160,1119,1078,1039,978,865$ and $816 ; \delta_{\mathbf{H}}(500$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 1.49 ($3 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{H}_{3}$), 1.94 ($2 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}_{2}$), 2.12 (1 H, dd, $\left.J 15.0,4.4,1^{\prime \prime \prime}-\mathrm{H}\right), 2.31\left(1 \mathrm{H}\right.$, dd, $\left.J 15.0,4.6,1^{\prime \prime \prime}-\mathrm{H}\right), 2.72-$ 2.79 and $2.89-2.97\left(4 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}-\right.$ and $\left.6^{\prime \prime}-\mathrm{H}_{2}\right), 3.31(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 3.33 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.75 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$), $3.84-3.99$ ($4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.10\left(1 \mathrm{H}, \mathrm{dt}, J 14.0,1.5\right.$, allylic $\left.\mathrm{CH}_{2}\right), 4.15(1 \mathrm{H}, \mathrm{d}$, $\left.J 8.0,1^{\prime}-\mathrm{H}\right), 4.24\left(1 \mathrm{H}, \mathrm{dt}, J 14.0,1.6\right.$, allylic $\left.\mathrm{CH}_{2}\right), 4.76(1 \mathrm{H}, \mathrm{t}, J$ $\left.4.5,2^{\prime \prime \prime}-\mathrm{H}\right), 5.67\left(1 \mathrm{H}, \mathrm{d}, J 15.7,3^{\prime}-\mathrm{H}\right), 5.96(1 \mathrm{H}$, br s, $3-\mathrm{H}), 5.97(1$ H, dd, $\left.J 15.6,8.0,2^{\prime}-\mathrm{H}\right)$ and $6.30(1 \mathrm{H}, \mathrm{br} \mathrm{s,3} 3-\mathrm{H}) ; m / z$ (EI) 448 $\left(\mathbf{M}^{+}\right), 417(\mathrm{M}-\mathrm{OMe}), 241,226,207$ and 75.
(E)-Methyl $2-\left\{1^{\prime}-\left[2^{\prime \prime}-\left(1^{\prime \prime \prime}-\right.\right.\right.$ Formylmethyl $)-1^{\prime \prime}, 3^{\prime \prime}$-dithian- $2^{\prime \prime}-$ $y l]-4^{\prime}$-oxopent-2'-enyloxymethyl $\}$ propenoate 12 .-A solution of the acetal $11(0.785 \mathrm{~g}, 1.75 \mathrm{mmol})$ in 2% aq. acetone $\left(25 \mathrm{~cm}^{3}\right)$ containing PPTS $(0.135 \mathrm{~g}, 0.53 \mathrm{mmol})$ was heated at reflux for 4 h. The mixture was allowed to cool, poured into water (100 cm^{3}), and extracted with diethyl ether ($4 \times 50 \mathrm{~cm}^{3}$). The combined organic layers were washed successively with saturated aq. sodium hydrogencarbonate ($50 \mathrm{~cm}^{3}$), water ($50 \mathrm{~cm}^{3}$), and brine ($50 \mathrm{~cm}^{3}$), then were dried over anhydrous magnesium sulfate. Evaporation of the solvent under reduced pressure and purification of the residue by flash chromatography $(80 \%$ diethyl ether-light petroleum) gave the enone $12(0.572 \mathrm{~g}, 91 \%)$ as a pale yellow oil (Found: $\mathrm{C}, 53.45 ; \mathrm{H}, 6.2 . \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~S}_{2}$ requires $\mathrm{C}, 53.61 ; \mathrm{H}, 6.19 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 2907,1714,1675$, $1627,1435,1359,1309,1275,1254,1199,1163,1068$ and 983 ; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.96-2.06\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}_{2}\right), 2.32(3 \mathrm{H}, \mathrm{s}$, $\left.5^{\prime}-\mathrm{H}_{3}\right), 2.69\left(1 \mathrm{H}, \mathrm{dd}, J 16.5,2.7,1^{\prime \prime \prime}-\mathrm{H}\right), 2.76-2.80\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}-\right.$ or $\left.6^{\prime \prime}-\mathrm{H}\right), 2.83\left(1 \mathrm{H}, \mathrm{dd}, J 16.6,2.6,1^{\prime \prime \prime}-\mathrm{H}\right), 2.83-2.85\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime \prime}\right.$ - or $\left.4^{\prime \prime}-\mathrm{H}\right), 2.94-2.99\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}-\mathrm{H}\right.$ and/or $\left.6^{\prime \prime}-\mathrm{H}\right)$, $3.76(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 4.16\left(1 \mathrm{H}, \mathrm{dt}, J 13.2,1.2\right.$, allylic $\left.\mathrm{CH}_{2}\right), 4.30(1 \mathrm{H}, \mathrm{dt}, J$ 13.2, 1.2, allylic CH_{2}), 4.32 (1 H , dd, $\left.J 6.7,1.1,1^{\prime}-\mathrm{H}\right), 5.90(1 \mathrm{H}$, $\mathrm{dt}, J 1.4,1.4,3-\mathrm{H}), 6.28\left(1 \mathrm{H}, \mathrm{dd}, J 16.0,1.0,3^{\prime}-\mathrm{H}\right), 6.33(1 \mathrm{H}, \mathrm{d}, J$
1.2, 3-H), $6.85\left(1 \mathrm{H}, \mathrm{dd}, J 13.0,6.6,2^{\prime}-\mathrm{H}\right), 9.84(1 \mathrm{H}, \mathrm{t}, J 2.7$, CHO); m / z (EI) $358\left(\mathrm{M}^{+}\right), 340,327,294,161$ and 133.
(E)-Methyl 2-\{1'-[2"-(1,3-Dioxan-2-ylmethyl)-1", $3^{\prime \prime}$-dithian$\left.2^{\prime \prime}-y l\right]-4^{\prime}$-oxopent- 2^{\prime}-enyloxymethyl $\}$ propenoate 13.-A mixture of the aldehyde $12(4.36 \mathrm{~g}, 12.2 \mathrm{mmol}), \operatorname{PPTS}(0.307 \mathrm{~g}, 1.22$ $\mathrm{mmol})$, and propane-1,3-diol $\left(0.88 \mathrm{~cm}^{3}, 12.2 \mathrm{mmol}\right)$ in anhydrous benzene ($150 \mathrm{~cm}^{3}$) was heated at reflux with azeotropic removal of water for 3 h . After cooling, the flask contents were poured into saturated aq. sodium hydrogen carbonate $\left(300 \mathrm{~cm}^{3}\right)$ and extracted with diethyl ether (4×200 cm^{3}). The combined organic extracts were washed successively with saturated aq. sodium hydrogencarbonate $\left(100 \mathrm{~cm}^{3}\right)$ and brine ($100 \mathrm{~cm}^{3}$), then were dried over anhydrous sodium sulfate and concentrated. Purification by flash chromatography (90% diethyl ether-light petroleum) gave the dioxane $13(4.20 \mathrm{~g}, 83 \%)$ as a pale yellow oil (Found: $\mathrm{C}, 54.6 ; \mathrm{H}, 6.6 . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires $\mathrm{C}, 54.79 ; \mathrm{H}, 6.78 \%$); $v_{\max }($ film $) 2952,2854,1719,1675$, $1627,1433,1359,1307,1275,1253,1198,1160,1132,1086,991$ and $816 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.30-1.34\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, 1.94-2.02 ($2 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}$), 2.03-2.10 (1 H, m, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 2.14 (1 $\left.\mathrm{H}, \mathrm{dd}, J 15.3,4.2,1^{\prime \prime \prime}-\mathrm{H}\right), 2.31\left(3 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{H}_{3}\right), 2.34(1 \mathrm{H}, \mathrm{dd}, J 15.4$, $\left.4.3,1^{\prime \prime \prime}-\mathrm{H}\right), 2.75-2.81\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}-\right.$ or $\left.6^{\prime \prime}-\mathrm{H}_{2}\right), 2.90-2.97(2 \mathrm{H}, \mathrm{m}$, $6^{\prime \prime}$ - or $\left.4^{\prime \prime}-\mathrm{H}_{2}\right), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.76-3.82(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $4.06-4.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.16(1 \mathrm{H}, \mathrm{dt}, J$ 13.7, 1.4, allylic $\left.\mathrm{CH}_{2}\right), 4.25\left(1 \mathrm{H}, \mathrm{dt}, J 13.7,1.5\right.$, allylic $\left.\mathrm{CH}_{2}\right), 4.36$ ($\left.1 \mathrm{H}, \mathrm{dd}, J 7.0,1.1,1^{\prime}-\mathrm{H}\right), 4.90\left(1 \mathrm{H}, \mathrm{t}, J 4.2,2^{\prime \prime \prime}-\mathrm{H}\right), 5.97(1 \mathrm{H}$, dd, $J 3.3,1.7,3-\mathrm{H}), 6.24\left(1 \mathrm{H}\right.$, dd, $\left.J 16.2,1.0,3^{\prime}-\mathrm{H}\right), 6.32(1 \mathrm{H}, \mathrm{dd}, J$ $2.8,1.4,3-H)$ and $6.89\left(1 \mathrm{H}\right.$, dd, $\left.J 16.1,6.8,2^{\prime}-\mathrm{H}\right)$; m / z (EI) 416 $\left(\mathbf{M}^{+}\right), 385(\mathrm{M}-\mathrm{OMe}), 354,315,309,302,255,219$ and 87.
(E)-Methyl 2-\{4'-(tert-Butyldimethylsiloxy)-1'-[2"-(1,3-dioxan-2-ylmethyl)-1", $3^{\prime \prime}$-dithian- $\left.2^{\prime \prime}-y l\right]$ penta- $2^{\prime}, 4^{\prime}$-dienyloxymethyl $\}$ propenoate 2 .-Triethylamine ($331 \mathrm{~mm}^{3}, 2.38 \mathrm{mmol}$) was added to a stirred solution of the enone $13(330 \mathrm{mg}, 0.792$ mmol) in anhydrous dichloromethane at $-20^{\circ} \mathrm{C}$ followed by tert-butyldimethylsilyl triflate (TBDMSOTf) ($219 \mathrm{~mm}^{3}, 0.95$ mmol). After being stirred at $-20^{\circ} \mathrm{C}$ for 30 min the mixture was poured into saturated aq. sodium hydrogencarbonate $\left(50 \mathrm{~cm}^{3}\right)$ and the aqueous layer was extracted with dichloromethane $\left(2 \times 50 \mathrm{~cm}^{3}\right)$. The combined organic layers were dried over anhydrous sodium sulfate and the solvent was evaporated off under reduced pressure to give a pale yellow oil. Purification by flash chromatography (gradient elution, 30-50\% diethyl etherlight petroleum) gave the silyl dienol ether $2(0.376 \mathrm{~g}, 90 \%)$ as an oil (Found: C, 56.7; H, 8.05. $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{6} \mathrm{~S}_{2}$ Si requires $\mathrm{C}, 56.57 ; \mathrm{H}$, 7.98%); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2953,2929,2855,1719,1634,1593$, $1460,1430,1307,1277,1254,1157,1133,1088,1027,1004,839$ and 782; $\delta_{\mathbf{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.18(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}), 0.19(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeSi}), 0.97\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathbf{t}} \mathrm{Si}\right), 1.28-1.32\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 1.90-$ $1.96\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}_{2}\right), 1.99-2.09\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2.19(1 \mathrm{H}$, dd, $\left.J 15.3,4.0,1^{\prime \prime \prime}-\mathrm{H}\right), 2.35\left(1 \mathrm{H}\right.$, dd, $\left.J 15.3,4.1,1^{\prime \prime \prime}-\mathrm{H}\right), 2.74-2.81$ ($2 \mathrm{H}, \mathrm{m}, 6^{\prime \prime}-\mathrm{H}_{2}$), 2.86-2.82 ($2 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}-\mathrm{H}_{2}$), $3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$, 3.74-3.93 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 4.03-4.08 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $4.10\left(1 \mathrm{H}, \mathrm{dt}, J 14.1,1.6\right.$, allylic $\left.\mathrm{CH}_{2}\right), 4.19\left(1 \mathrm{H}, \mathrm{d}, J 7.2,1^{\prime}-\mathrm{H}\right)$, $4.25\left(1 \mathrm{H}, \mathrm{dt}, J 14.1,1.6\right.$, allylic $\left.\mathrm{CH}_{2}\right), 4.36\left(2 \mathrm{H}, \mathrm{d}, J 6.8,5^{\prime}-\mathrm{H}_{2}\right)$, $4.90\left(1 \mathrm{H}, \mathrm{t}, J 4.0,2^{\prime \prime \prime}-\mathrm{H}\right), 5.98(1 \mathrm{H}, \mathrm{dd}, J 3.6,2.8,3-\mathrm{H}), 6.09(1 \mathrm{H}$, d, $\left.J 15.4,3^{\prime}-\mathrm{H}\right), 6.14\left(1 \mathrm{H}, \mathrm{dd}, J 15.4,7.2,2^{\prime}-\mathrm{H}\right)$ and $6.30(1 \mathrm{H}$, dd, $J 3.0,1.5,3-\mathrm{H}) ; m / z(\mathrm{EI}) 530\left(\mathrm{M}^{+}\right), 499(\mathrm{M}-\mathrm{OMe}), 475,423$, 275, 252 and 219.
(2E)-Methyl $\quad 2-\left\{(\mathrm{E})-1^{\prime}-\left[2-\left(2^{\prime \prime \prime}, 2^{\prime \prime \prime}-\right.\right.\right.$ Dimethoxyethyl $)-1,3-$ dithian-2-yl]-4'-oxopent-2-enyloxymethyl $\}$-3-[dimethyl-
(phenyl)silyl] propenoate 15.-Flame-dried lithium chloride (50 $\mathrm{mg}, 1.18 \mathrm{mmol}$) was added to a stirred solution of dimethyl (2oxopropyl)phosphonate ($156 \mathrm{~cm}^{3}, 1.13 \mathrm{mmol}$) and the aldehyde 14^{1} ($200 \mathrm{mg}, 0.40 \mathrm{mmol}$) in dimethylformamide (DMF) (1.5 cm^{3}). Diisopropylethylamine ($150 \mathrm{~cm}^{3}, 0.86 \mathrm{mmol}$) was intro-
duced during 18 h , using a syringe pump. The solution was stirred for a further 6 h and then further lithium chloride (50 mg , 1.18 mmol) and dimethyl (2-oxopropyl)phosphonate ($156 \mathrm{~cm}^{3}$, 1.13 mmol) were added, followed by slow addition (15 h) of diisopropylethylamine ($130 \mathrm{~cm}^{3}, 0.75 \mathrm{mmol}$). After addition was complete, the brown reaction mixture was stirred for a further 9 h , then poured into saturated aq. ammonium chloride $\left(15 \mathrm{~cm}^{3}\right)$ and extracted with diethyl ether ($3 \times 50 \mathrm{~cm}^{3}$). The combined organic layers were washed with brine ($50 \mathrm{~cm}^{3}$), dried over anhydrous magnesium sulfate, and concentrated. Purification of the residue by flash chromatography (35% diethyl ether-light petroleum) gave, in order of elution, the starting aldehyde 14 (37 $\mathrm{g}, 19 \%$ recovery) and the (E, E)-diene $15(140 \mathrm{mg}, 65 \%$) as a pale yellow oil $\left\{\right.$ Found $\left[\mathrm{M}-\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~S}_{2}\right) \mathrm{CCH}_{2} \mathrm{CH}(\mathrm{OMe})_{2}\right] 331.1358$. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{Si}$ requires $\mathrm{m} / \mathrm{z} 331.1366$; Found: C, 58.0; H, 7.1. $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{~S}_{2} \mathrm{Si}$ requires C, $57.96 ; \mathrm{H}, 7.11 \%$ \}; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ 3066, 3043, 2948, 2828, 1716, 1675, 1624, 1426, 1359, 1250, 1225, $1116,1073,837,736$ and $702 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.47(3 \mathrm{H}, \mathrm{s}$, Me), 0.48 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $1.90-1.81\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}\right), 1.91(1 \mathrm{H}, \mathrm{dd}, J$ $\left.4.9,15.1,1^{\prime \prime \prime}-\mathrm{H}\right), 2.02-1.94\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}\right), 2.12(1 \mathrm{H}, \mathrm{dd}, J 4.1$, $\left.15.1,1^{\prime \prime \prime} \cdot \mathrm{H}\right), 2.26\left(3 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{H}_{3}\right), 2.66-2.57\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}\right.$ - and $6^{\prime \prime} \mathrm{H}$), $3.30(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.76$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$), $4.08(1 \mathrm{H}, \mathrm{d}, J$ 10.6, allylic $\mathrm{CH}_{2} \mathrm{O}$), $4.19\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.7\right.$, allylic $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.24(1 \mathrm{H}$, dd, $\left.J 0.8,7.1,1^{\prime}-\mathrm{H}\right), 4.73\left(1 \mathrm{H}, \mathrm{t}, J 4.5,2^{\prime \prime \prime}-\mathrm{H}\right), 6.14(1 \mathrm{H}, \mathrm{dd}, J$ $\left.0.8,16.2,3^{\prime}-\mathrm{H}\right), 6.77$ ($\left.1 \mathrm{H}, \mathrm{dd}, J 7.1,16.2,2^{\prime}-\mathrm{H}\right), 7.16(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$, 7.41-7.32 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$) and 7.53-7.48 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m / z (EI) 431 [$\mathrm{M}-\mathrm{CH}(\mathrm{OMe})_{2}-\mathrm{MeOH}, 0.3 \%$], 381 (0.3), 331 [M $\left.\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~S}_{2}\right) \mathrm{CCH}_{2} \mathrm{CH}(\mathrm{OMe})_{2}, 0.5\right], 319\left(\mathrm{M}-\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{Si}, 0.5\right)$, 279 (1.9), $233\left(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{Si}, 3.2\right), 207 \quad\left[\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~S}_{2}\right) \mathrm{CCH}_{2}-\right.$ $\left.\mathrm{CH}(\mathrm{OMe})_{2}, 22\right]$ and $75\left[\mathrm{CH}(\mathrm{OMe})_{2}, 75\right]$.
(2E)-Methyl $\quad 2-\left\{(\mathrm{E})-4^{\prime}\right.$-tert-Butyldimethylsiloxy-1'-[2"($2^{\prime \prime \prime}, 2^{\prime \prime \prime}$-dimethoxyethyl) $-1^{\prime \prime}, 3^{\prime \prime}$-dithian- $\left.2^{\prime \prime}-y l\right]$ penta- $2^{\prime}, 4^{\prime}$-dienyl-oxymethyl\}-3-[dimethyl(phenyl)silyl]propenoate 3.-tertButyldimethylsilyl triflate ($30 \mathrm{~mm}^{3}, 0.13 \mathrm{mmol}$) was added dropwise via syringe to a stirred solution of the enone $15(50 \mathrm{mg}$, 0.093 mmol) and triethylamine ($45 \mathrm{~mm}^{3}, 0.32 \mathrm{mmol}$) in dichloromethane ($1.5 \mathrm{~cm}^{3}$) under argon at $-20^{\circ} \mathrm{C}$. After 30 min , the mixture was poured into saturated aq. sodium hydrogencarbonate ($10 \mathrm{~cm}^{3}$) and the aqueous layer was extracted with dichloromethane ($3 \times 15 \mathrm{~cm}^{3}$). The combined organic layers were dried over anhydrous sodium sulfate and concentrated. Purification of the residue by flash chromatography on Florisil (20% diethyl ether-light petroleum) afforded the silyl enol ether 3 ($52 \mathrm{mg}, 86 \%$) as an oil; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ 3068, 3045, 2951, 2929, 2855, 1717, 1592, 1459, 1426, 1308, 1251, $1223,1116,1072,1025,839,782,734$ and $700 ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$; $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) 0.25(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.27(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.44(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.46$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $1.11\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right.$), 1.64-1.57 ($2 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}_{2}$), 2.37 (1 H, dd, $\left.J 4.60,14.9,1^{\prime \prime \prime}-\mathrm{H}\right)$, 2.45-2.37 ($2 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}$ - and $6^{\prime \prime}-\mathrm{H}$), 2.59 (1 H, dd, $\left.J 4.1,14.9,1^{\prime \prime \prime}-\mathrm{H}\right), 2.91-2.81\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}\right.$ - and $\left.6^{\prime \prime}-\mathrm{H}\right), 3.30$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.33 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.58 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$), 4.28 (1 $\mathrm{H}, \mathrm{d}, J 10.4$, allylic $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.39\left(1 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{H}\right), 4.41(1 \mathrm{H}$, br d, J $\left.8.4,1^{\prime}-\mathrm{H}\right), 4.47\left(1 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{H}\right), 4.47\left(1 \mathrm{H}, \mathrm{d}, J 10.4\right.$, allylic $\left.\mathrm{CH}_{2} \mathrm{O}\right)$, $5.14(1 \mathrm{H}, \mathrm{t}, J 4.4,2-\mathrm{H}), 6.20\left(1 \mathrm{H}, \mathrm{dd}, J 0.5,15.4,3^{\prime}-\mathrm{H}\right), 6.59(1$ H, dd, $\left.J 8.1,15.4,2^{\prime}-\mathrm{H}\right), 7.29-7.22$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.41 ($1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}$), and 7.56-7.51 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m/z (EI) $233\left(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{Si}, 6.5 \%\right.$), $207\left[\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~S}_{2}\right) \mathrm{CCH}_{2} \mathrm{CH}(\mathrm{OMe})_{2}, 2.7\right], 135\left(\mathrm{PhMe}_{2} \mathrm{Si}, 17\right), 89$ $\left[\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OMe})_{2}, 20\right]$ and $75\left[\mathrm{CH}(\mathrm{OMe})_{2}, 75\right]$.

Methyl 2-\{ 2^{\prime}-tert-Butyldimethylsiloxy- $1^{\prime}-\left[2^{\prime \prime}-\left(2^{\prime \prime \prime}, 2^{\prime \prime \prime}\right.\right.$-dimeth oxyethyl) $-1^{\prime \prime}, 3^{\prime \prime}-$ dithian $\left.-2^{\prime \prime}-y l\right]$ ethoxymethyl $\}$ propenoate 17.-A solution of the alcohol $16^{1}(2.08 \mathrm{~g}, 5.44 \mathrm{mmol})$ in THF $\left(15 \mathrm{~cm}^{3}\right.$, $+2 \times 2 \mathrm{~cm}^{3}$ rinse) was added via cannula to a stirred suspension of potassium hydride (1.4 g of a 35% suspension in mineral oil, 12.2 mmol) in anhydrous THF ($35 \mathrm{~cm}^{3}$). The mixture was stirred at room temperature until gas evolution had ceased (17 min), causing a yellow colour to develop. Methyl 2-(bromo-
methyl)propenoate ($1.25 \mathrm{~cm}^{3}, 10.84 \mathrm{mmol}$) was added. The colour discharged over 2-3 min and a precipitate formed. After 30 min , the reaction was quenched by slow addition of saturated aq. ammonium chloride ($20 \mathrm{~cm}^{3}$). The mixture was extracted with diethyl ether ($3 \times 50 \mathrm{~cm}^{3}$) and the combined organic layers were washed with brine ($50 \mathrm{~cm}^{3}$), dried over anhydrous magnesium sulfate, and concentrated. Purification of the residue by flash chromatography (20% diethyl ether-light petroleum) gave the ether $17(2.3 \mathrm{~g}, 88 \%$) as an oil (Found: C, $52.5 ; \mathrm{H}, 8.6 . \mathrm{C}_{21} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{~S}_{2} \mathrm{Si}$ requires $\mathrm{C}, 52.47 ; \mathrm{H}, 8.39 \%$;) $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2950,2929,2855,1719,1634,1437,1276,1256$, 1120, 1081, 838 and $777 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.05(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeSi}), 0.06(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 2.02-1.88\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\right.$ $\left.\mathrm{H}_{2}\right), 2.10\left(1 \mathrm{H}, \mathrm{dd}, J 4.3,15.2,1^{\prime \prime \prime}-\mathrm{H}\right), 2.34(1 \mathrm{H}, \mathrm{dd}, J 4.5,15.1$, $1^{\prime \prime \prime}-\mathrm{H}$), 2.75 (2 H, ddd, $J 3.7,7.1,14.2,4^{\prime \prime}$ - and $6^{\prime \prime}-\mathrm{H}$), 2.97-2.88 ($2 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}$ - and $6^{\prime \prime}-\mathrm{H}$), 3.33 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.34 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.89-3.82\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}\right.$-or $1^{\prime}-\mathrm{H}$ and $\left.2^{\prime}-\mathrm{H}\right)$, $4.21\left(1 \mathrm{H}, \mathrm{dd}, J 0.5,9.0,1^{\prime}-\right.$ or $\left.2^{\prime}-\mathrm{H}\right), 4.46(1 \mathrm{H}, \mathrm{dt}, J 14.4,1.9$, allylic $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.63\left(1 \mathrm{H}, \mathrm{dt}, J 14.4,1.8\right.$, allylic $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.76(1 \mathrm{H}$, $\left.\mathrm{t}, J 4.4,2^{\prime \prime \prime}-\mathrm{H}\right), 5.99(1 \mathrm{H}, \mathrm{q}, J 2.0,3-\mathrm{H})$ and $6.29(1 \mathrm{H}, \mathrm{q}, J 1.7,3-$ H); $m / z(\mathrm{EI}) 480\left(\mathrm{M}^{+}, 0.3 \%\right), 449(\mathrm{M}-\mathrm{OMe}, 1.1), 4.33$ (M $\mathrm{CH}_{2} \mathrm{SH}, 0.2$), $423\left(\mathrm{M}-\mathrm{Bu}^{t}, 0.2\right), 405\left[\mathrm{M}-\mathrm{CH}(\mathrm{OMe})_{2}, 0.2\right]$, $391\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OMe})_{2}, 0.2\right], 335\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{OTBDMS}\right.$, 0.3), $273 \quad\left[\mathrm{M}-\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~S}_{2}\right) \mathrm{CCH}_{2} \mathrm{CH}(\mathrm{OMe})_{2}, \quad 0.7\right], \quad 207$ $\left[\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~S}_{2}\right) \mathrm{CCH}_{2} \mathrm{CH}(\mathrm{OMe})_{2} 38\right], 89\left[\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OMe})_{2}, 5.5\right]$ and 75 [$\mathrm{Me}_{2} \mathrm{SiOH}$ and $\left.\mathrm{CH}(\mathrm{OMe})_{2}, 100\right]$.

Methyl 2-\{1'-[2"-(2"', $2^{\prime \prime \prime}$-Dimethoxyethyl) $-1^{\prime \prime}, 3^{\prime \prime}-$ dithian- $2^{\prime \prime}-$ $\left.y l]-2^{\prime}-h y d r o x y e t h o x y m e t h y l\right\} p r o p e n o a t e ~ 18 .-H y d r o g e n ~ f l u o r-~$ ide ($3.1 \mathrm{~cm}^{3}$ of a 40% aq. solution, 71.2 mmol) was added via syringe to a stirred solution of the silyl ether $17(9 \mathrm{~g}, 18.7 \mathrm{mmol})$ and pyridine ($6 \mathrm{~cm}^{3}, 74.2 \mathrm{mmol}$) in acetonitrile ($80 \mathrm{~cm}^{3}$). After 16 h , the reaction was quenched by careful addition of saturated aq. sodium hydrogencarbonate $\left(60 \mathrm{~cm}^{3}\right)$ and the mixture was stirred vigorously until effervescence ceased. The mixture was extracted with diethyl ether ($3 \times 80 \mathrm{~cm}^{3}$) and the combined organic layers were washed with brine ($75 \mathrm{~cm}^{3}$), dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. Flash chromatography of the residue (70% diethyl ether-light petroleum) afforded the alcohol $18(5.3 \mathrm{~g}, 77 \%)$ as a pale yellow oil (Found: $\mathrm{C}, 48.9 ; \mathrm{H}, 7.3 . \mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires C, 49.16; H, 7.15\%); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3473,2932,2829,1713,1633$, 1439, 1343, 1277, 1197, 1118, 1077 and $960 ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.97-1.85\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}\right), 2.07-1.99\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}\right), 2.05$ ($\left.1 \mathrm{H}, \mathrm{dd}, J 4.4,15.2,1^{\prime \prime \prime}-\mathrm{H}\right), 2.29\left(1 \mathrm{H}, \mathrm{dd}, J 4.4,15.1,1^{\prime \prime \prime}-\mathrm{H}\right)$, 2.78-2.69 ($2 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}$ - and $\left.6^{\prime \prime}-\mathrm{H}\right), 3.02-2.93\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}\right.$-and $\left.6^{\prime \prime}-\mathrm{H}\right)$, 3.33 ($3 \mathrm{H}, \mathrm{s}$, OMe), 3.34 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.47 ($1 \mathrm{H}, \mathrm{dd}, J 3.8,9.8$, OH), 3.84-3.73 [1 H, m (obscured by $\mathrm{CO}_{2} \mathrm{Me}$), $3.79(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{Me}$), $3.97\left(1 \mathrm{H}, \mathrm{dd}, J 3.5,7.6,1^{\prime}-\mathrm{H}\right.$), 4.04 (1 H , ddd, $J 3.6,9.8$, $\left.11.9,2^{\prime}-\mathrm{H}\right), 4.50\left(1 \mathrm{H}\right.$, dd, $J 1.1,11.4$, allylic $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.57(1 \mathrm{H}, \mathrm{br}$ d, $J 11.4$, allylic $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.77\left(1 \mathrm{H}, \mathrm{t}, J 4.4,2^{\prime \prime \prime}-\mathrm{H}\right), 5.93(1 \mathrm{H}, \mathrm{q}, J$ $1.1,3-\mathrm{H})$ and $6.31(1 \mathrm{H}, \mathrm{br}$ d, $J 1.2,3-\mathrm{H})$; m / z (EI) $366\left(\mathrm{M}^{+}\right.$, 0.4%), 335 (M - $\mathrm{OMe}, 0.3$), 334 ($\mathrm{M}-\mathrm{MeOH}, 0.6$), 303 (1.8), 245 (1.6), $207\left[\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~S}_{2}\right) \mathrm{CCH}_{2} \mathrm{CH}(\mathrm{OMe})_{2}, 32\right], 159$ [M $\left.\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~S}_{2}\right) \mathrm{CCH}_{2} \mathrm{CH}(\mathrm{OMe})_{2}, 2.5\right], 99\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2} 1.5\right)$ and 75 [CH(OMe) $\left.{ }_{2}, 100\right]$.

Methyl 2-\{[2"-($2^{\prime \prime \prime}, 2^{\prime \prime \prime}-$ Dimethoxyethyl $)-1^{\prime \prime}, 3^{\prime \prime}$-dithian $\left.-2^{\prime \prime}-y l\right]-$ formylmethoxymethyl\}propenoate 19.-Anhydrous dimethyl sulfoxide (DMSO) ($2.8 \mathrm{~cm}^{3}, 39.5 \mathrm{mmol}$) was added via syringe to a solution of oxalyl dichloride ($1.75 \mathrm{~cm}^{3}, 20.1 \mathrm{mmol}$) in THF $\left(50 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under argon. The mixture was warmed to $-35^{\circ} \mathrm{C}$ for 3 min , then was recooled to $-78^{\circ} \mathrm{C}$, and a solution of the alcohol $18(5.2 \mathrm{~g}, 14.28 \mathrm{mmol})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$ was added via cannula. After warming to $-35^{\circ} \mathrm{C}$ for 20 min , the reaction mixture was recooled to $-78^{\circ} \mathrm{C}$ and triethylamine $\left(7 \mathrm{~cm}^{3}, 50.2\right.$ mmol) was added. The opaque solution was allowed to warm to room temperature, causing the formation of a thick precipitate.

The reaction mixture was poured directly onto a silica column $(200 \mathrm{~g})$ and the crude product was eluted with 60% diethyl etherlight petroleum. Subsequent purification by flash chromatography (55% diethyl ether-light petroleum) gave the aldehyde $19(3.64 \mathrm{~g}, 70 \%)$ as a pale yellow oil [Found: ($\mathrm{M}-\mathrm{OMe}$), 333.0836. $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{~S}_{2}$ requires m / z, 333.0830]; $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 2948,2830,1723,1634,1437,1278,1197,1120,1079$ and 962; $\delta_{\mathbf{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.84-2.15\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}_{2}\right), 2.20(1$ H , dd, $\left.J 4.4,15.1,1^{\prime \prime \prime}-\mathrm{H}\right), 2.41\left(1 \mathrm{H}, \mathrm{dd}, J 5.0,15.0,1^{\prime \prime \prime}-\mathrm{H}\right), 2.81-$ $2.64\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}\right.$ - and $\left.6^{\prime \prime}-\mathrm{H}\right), 2.91-3.10\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}-\right.$ and $\left.6^{\prime \prime}-\mathrm{H}\right), 3.33$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.34(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.09(1$ $\left.\mathrm{H}, \mathrm{d}, J 2.9,1^{\prime}-\mathrm{H}\right), 4.28\left(1 \mathrm{H}, \mathrm{dt}, J 13.4,1.4\right.$, allylic $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.43(1$ $\mathrm{H}, \mathrm{dt}, J 13.4,1.4$, allylic $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.77\left(1 \mathrm{H}, \mathrm{t}, J 4.6,2^{\prime \prime \prime}-\mathrm{H}\right), 5.99$ $(1 \mathrm{H}, \mathrm{q}, J 1.6,3-\mathrm{H}), 6.35(1 \mathrm{H}, \mathrm{br}$ d, $J 1.2,3-\mathrm{H})$ and $9.75(1 \mathrm{H}, \mathrm{d}, J$ $\left.3.2,2^{\prime}-\mathrm{H}\right), m / z$ (EI) $364\left(\mathrm{M}^{+}, 0.1 \%\right.$), 335 (M - CHO, 1.1), 333 ($\mathrm{M}-\mathrm{OMe}, 0.9$), $289\left[\mathrm{M}-\mathrm{CH}(\mathrm{OMe})_{2}, 0.1\right], 275$ [M $\left.\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OMe})_{2}, 1.1\right], 207\left[\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~S}_{2}\right) \mathrm{CCH}_{2} \mathrm{CH}(\mathrm{OMe})_{2}, 19\right], 99$ $\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2} 2.3\right)$ and $75\left[\mathrm{CH}(\mathrm{OMe})_{2}, 100\right]$.
(E)-Methyl 2-\{ $1^{\prime}-\left[2^{\prime \prime}-\left(2^{\prime \prime \prime}, 2^{\prime \prime \prime}\right.\right.$-Dimethoxyethyl $)-1^{\prime \prime}, 3^{\prime \prime}$-dithian$\left.2^{\prime \prime}-y l\right]-2^{\prime}-\left(2^{\prime \prime \prime \prime}\right.$-oxotetrahydrofuran- $3^{\prime \prime \prime \prime}$-ylidene $)$ ethoxymethyl $\}$ propenoate 21 and its (Z) Isomer 20.-Anhydrous lithium chloride ($125 \mathrm{mg}, 2.95 \mathrm{mmol}$) was added to a solution of α -diethoxyphosphoryl- γ-butyrolactone ($512 \mathrm{mg}, 2.3 \mathrm{mmol}$) in acetonitrile ($7.5 \mathrm{~cm}^{3}$). Following addition of a solution of the aldehyde 19 ($425 \mathrm{mg}, 1.17 \mathrm{mmol}$) in acetonitrile $\left(3 \mathrm{~cm}^{3}\right.$, + $2 \times 0.3 \mathrm{~cm}^{3}$ rinse) a solution of diisopropylethylamine (188 mg , 1.45 mmol) in acetonitrile ($1.7 \mathrm{~cm}^{3}$) was introduced over a period of 1.5 h via syringe pump. The mixture was stirred for 22 h , then was poured into water $\left(30 \mathrm{~cm}^{3}\right)$ and extracted with diethyl ether ($3 \times 30 \mathrm{~cm}^{3}$). The combined organic layers were washed with brine ($25 \mathrm{~cm}^{3}$), dried over anhydrous magnesium sulfate, and concentrated. Purification of the residue by flash chromatography (80% diethyl ether-light petroleum) gave, in order of elution, the (Z) compound $20(68 \mathrm{mg}, 13 \%)$ as an oil (Found: C, 52.8; H, 6.7. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{~S}_{2}$ requires $\mathrm{C}, 52.76 ; \mathrm{H}, 6.52$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ 2928, 2829, 1748, 1723, 1670, 1634, 1437, 1376, 1277, 1190, 1119, $1075,1027,960,915$ and $732 ; \delta_{\mathbf{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.82-1.92 (1 $\left.\mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}\right), 1.95-2.04\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}\right), 2.08\left(1 \mathrm{H}, \mathrm{dd}, J 3.8,15.1,1^{\prime \prime \prime}-\right.$ H), 2.32 (1 H, dd, $\left.J 4.8,15.1,1^{\prime \prime \prime}-\mathrm{H}\right), 2.64$ (1 H, ddd, J 3.4, 6.7, 14.2, $6^{\prime \prime}-$ or $\left.4^{\prime \prime} \mathrm{H}\right), 2.69\left(1 \mathrm{H}\right.$, ddd, J 3.1, 6.8, 14.3, $4^{\prime \prime}$-or $\left.6^{\prime \prime}-\mathrm{H}\right), 3.14-2.96$ ($4 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}-\mathrm{H}$ and $6^{\prime \prime}-\mathrm{H}$), 3.37 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.35 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.22\left(1 \mathrm{H}, \mathrm{dt}, J 13.9,1.4\right.$, allylic $\left.\mathrm{CH}_{2} \mathrm{O}\right)$, 4.28 ($1 \mathrm{H}, \mathrm{dt}, J 13.9,1.4$, allylic $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.39\left(2 \mathrm{H}, \mathrm{t}, J 7.4,5^{\prime \prime \prime \prime}-\mathrm{H}\right)$, 4.79 ($\left.1 \mathrm{H}, \mathrm{dd}, J 3.8,4.7,2^{\prime \prime \prime}-\mathrm{H}\right), 5.82\left(1 \mathrm{H}, \mathrm{d}, J 10.1,1^{\prime}-\mathrm{H}\right), 5.96$ (1 $\mathrm{H}, \mathrm{q}, J 1.7,3-\mathrm{H}), 6.29(1 \mathrm{H}, \mathrm{dt}, J 1.4,1.1,3-\mathrm{H})$ and $6.32(1 \mathrm{H}, \mathrm{dt}, J$ $\left.10.1,2.4,2^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(125.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 169.9\left(\mathrm{CO}_{2} \mathrm{R}\right), 166.1$ $\left(\mathrm{CO}_{2} \mathrm{R}^{\prime}\right), 137.5,137.1,128.0,126.5,102.6\left[\mathrm{CH}(\mathrm{OMe})_{2}\right], 74.8$, $67.9,65.5,53.9,53.5,53.1,51.7,39.3,29.1,26.4,26.2$ and 24.54 ; $m / z(\mathrm{EI}, 18 \mathrm{eV}) 432\left(\mathrm{M}^{+}, 0.1 \%\right), 402\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{O}, 0.2\right), 400$ (M - MeOH, 0.3), 369 (0.4), 285 (0.6), 254 (0.6), 240 (1), 207 $\left[\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~S}_{2}\right) \mathrm{CCH}_{2} \mathrm{CH}(\mathrm{OMe})_{2}, 100\right]$ and $75\left[\mathrm{CH}(\mathrm{OMe})_{2}, 64\right]$; and the (E)-compound 21 ($211 \mathrm{mg}, 42 \%$) as a viscous oil (Found: C, $52.5 ; \mathrm{H}, 6.7 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 2922,2830,1754,1720,1679$, $1635,1437,1379,1279,1196,1118,1075,1031,963$ and 730 ; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.91-2.01\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}_{2}\right), 2.17(1 \mathrm{H}, \mathrm{dd}, J$ 4.3, 15.0, $\left.1^{\prime \prime \prime}-\mathrm{H}\right), 2.39\left(1 \mathrm{H}\right.$, dd, $\left.J 5.0,15.0,1^{\prime \prime \prime}-\mathrm{H}\right), 2.72-2.84(2 \mathrm{H}$, $\mathrm{m}, 4^{\prime \prime}$ - and $\left.6^{\prime \prime}-\mathrm{H}\right), 2.85-2.97\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}\right.$-and $6^{\prime \prime}-\mathrm{H}$), 2.99-3.08 (2 $\mathrm{H}, \mathrm{m}, 4^{\prime \prime \prime \prime}-\mathrm{H}_{2}$), $3.32(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.34(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.75(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 4.14\left(1 \mathrm{H}, \mathrm{dt}, J 13.7,1.5\right.$, allylic $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.21(1 \mathrm{H}, \mathrm{dt}, J$ 13.7, 1.5, allylic $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.43-4.34\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime \prime \prime \prime}-\mathrm{H}_{2}\right), 4.45(1 \mathrm{H}, \mathrm{d}$, $\left.J 8.6,1^{\prime}-\mathrm{H}\right), 4.75\left(1 \mathrm{H}, \mathrm{t}, J 4.6,2^{\prime \prime}-\mathrm{H}\right), 5.96(1 \mathrm{H}, \mathrm{q}, J 1.6,3-\mathrm{H})$, $6.31(1 \mathrm{H}, \mathrm{q}, J 1.3,3-\mathrm{H})$ and $6.92\left(1 \mathrm{H}, \mathrm{dt}, J 8.6,2.9,2^{\prime}-\mathrm{H}\right), \mathrm{m} / \mathrm{z}$ (EI) $432\left(\mathrm{M}^{+},<0.1 \%\right), 402\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{O},<0.1\right), 400(\mathrm{M}-$ $\mathrm{MeOH},<0.1), 357\left[\mathrm{M}-\mathrm{CH}(\mathrm{OMe})_{2}, 0.1\right], 343$ [$\mathrm{M}-$ $\left.\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OMe})_{2}, 0.1\right], 341(0.1), 244(0.3), 225\left[\mathrm{M}-\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~S}_{2}\right) \mathrm{C}\right.$ $\left.\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OMe})_{2}, 0.1\right], 207\left[\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~S}_{2}\right) \mathrm{CCH}_{2} \mathrm{CH}(\mathrm{OMe})_{2}, 12\right], 99$ $\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}, 1.9\right)$ and $75\left[\mathrm{CH}(\mathrm{OMe})_{2}, 100\right]$.
(2E)-Methyl $2-\left\{(\mathrm{E})-1^{\prime}-\left[2^{\prime \prime}-\left(2^{\prime \prime \prime}, 2^{\prime \prime \prime}-\right.\right.\right.$ Dimethoxyethyl $)-1^{\prime \prime}, 3^{\prime \prime}-$ dithian $\left.-2^{\prime \prime}-y l\right]-4^{\prime}, 4^{\prime}$-(ethylenedioxy)-3'-methylpent- 2^{\prime}-enyloxymethyl \}-3-[dimethyl(phenyl)silyl]propenoate 24.-A solution of the allyl alcohol $22^{8}(0.232 \mathrm{~g}, 0.64 \mathrm{mmol})$ in dry benzene (5 cm^{3}) was added via cannula to a stirred suspension of potassium hydride $(0.108 \mathrm{~g}, 35 \%$ dispersion in mineral oil; 0.96 mmol) in dry benzene ($4 \mathrm{~cm}^{3}$) under argon. After being stirred at ambient temperature for 1 h a yellow solution remained. A solution of the bromo ester $23^{1}(0.200 \mathrm{~g}, 0.64 \mathrm{mmol})$ in dry benzene $\left(8 \mathrm{~cm}^{3}\right)$ was then added via cannula and the mixture was stirred for 16 h . The flask contents were then poured into saturated aq. sodium hydrogencarbonate ($10 \mathrm{~cm}^{3}$) and extracted with diethyl ether ($3 \times 20 \mathrm{~cm}^{3}$). The combined organic extracts were dried over anhydrous sodium sulfate and concentrated. Flash chromatography (50% diethyl ether-light petroleum) gave the ether 24 $\left(0.200 \mathrm{~g}, 53 \%\right.$) as an oil (Found: C, 58.5; H, 7.4. $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{O}_{7} \mathrm{~S}_{2} \mathrm{Si}_{2}$ requires $\mathrm{C}, 58.4 ; \mathrm{H}, 7.4 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2947,1716,1426$, $1371,1316,1222,1199,1068,866$ and $734 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $0.48\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Ph} M e_{2} \mathrm{Si}\right), 1.44\left(3 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{H}_{3}\right), 1.67\left(3 \mathrm{H}, \mathrm{d}, J 1.4,3^{\prime}-\right.$ $\mathrm{Me}), 1.89\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}_{2}\right), 2.02\left(1 \mathrm{H}, \mathrm{dd}, J 15.0\right.$ and $\left.4.2,1^{\prime \prime \prime}-\mathrm{H}\right)$, $2.16\left(1 \mathrm{H}\right.$, dd, $J 14.8$ and $\left.4.41^{\prime \prime \prime}-\mathrm{H}\right), 2.69\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}-\right.$ and $\left.6^{\prime \prime}-\mathrm{H}\right)$, $2.96\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}\right.$ - and $\left.6^{\prime \prime}-\mathrm{H}\right), 3.31(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.65-3.9(4 \mathrm{H}, \mathrm{m}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.94(1 \mathrm{H}, \mathrm{d}, J 10.0$, allylic $\left.\mathrm{CH}_{2}\right), 4.09\left(1 \mathrm{H}, \mathrm{d}, J 10.0\right.$, allyl $\left.\mathrm{CH}_{2}\right), 4.37\left(1 \mathrm{H}, \mathrm{d}, J 10.1,1^{\prime}-\mathrm{H}\right)$, $4.73\left(1 \mathrm{H}, \mathrm{t}, J 4.3,2^{\prime \prime \prime}-\mathrm{H}\right), 5.84\left(1 \mathrm{H}, \mathrm{dd}, J 10.1\right.$ and $\left.1.4,2^{\prime}-\mathrm{H}\right), 7.13$ $(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.36(3 \mathrm{H}, \mathrm{m}, p$ - and $m-\mathrm{Ph})$ and $7.50(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Ph})$; m / z (EI) $596\left(\mathrm{M}^{+}, 0.2 \%\right), 581\left(\mathrm{M}-\mathrm{CH}_{3}, 0.1\right), 564(\mathrm{M}-$ $\mathrm{CH}_{3} \mathrm{OH}, 0.2$), $532\left(\mathrm{M}-2 \mathrm{CH}_{3} \mathrm{OH}, 0.1\right)$ and $519(\mathrm{M}-\mathrm{Ph}, 0.3)$.
(2E)-Methyl 3-[Dimethyl(phenyl)silyl]-2-\{(E)-1'-[2"-formylmethyl $)-1^{\prime \prime}, 3^{\prime \prime}$-dithian- $\left.2^{\prime \prime}-y l\right]-3^{\prime}$-methyl-4'-oxopent-2'-enyloxymethyl $\}$ propenoate 25 .-A solution of the ether $24(0.200 \mathrm{~g}, 0.34$ $\mathrm{mmol})$ and PPTS $(0.025 \mathrm{~g}, 0.10 \mathrm{mmol})$ in aq. acetone $\left(20 \mathrm{~cm}^{3}\right.$; $2 \% \mathrm{v} / \mathrm{v}$) was heated at reflux for 6 h . The flask contents were then cooled, concentrated ($\sim 3 \mathrm{~cm}^{3}$) under reduced pressure, and partitioned between saturated aq. sodium hydrogencarbonate $\left(10 \mathrm{~cm}^{3}\right)$ and diethyl ether ($3 \times 20 \mathrm{~cm}^{3}$). The combined organic fractions were dried over anhydrous sodium sulfate and concentrated to give the keto aldehyde $25(0.148 \mathrm{~g}, 85 \%$) as an oil (Found: $\mathrm{M}^{+}, 506.1619 . \mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{SiS}_{2}$ requires $\mathrm{M}, 506.1617$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 2949,1712,1426,1369,1225,1114,1093,1059$, 836,790 and $735 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.46\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Ph} M e_{2} \mathrm{Si}\right)$, 1.79 ($3 \mathrm{H}, \mathrm{d}, J 1.4,3^{\prime}-\mathrm{Me}$), $1.86\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}_{2}\right), 2.31$ (3 H , s, $\left.5^{\prime}-\mathrm{Me}\right), 2.68\left(1 \mathrm{H}, \mathrm{dd}, J 16.6\right.$ and $\left.2.6,1^{\prime \prime \prime}-\mathrm{H}\right), 2.7\left(3 \mathrm{H}, \mathrm{m}, 1^{\prime \prime \prime}-\right.$, $4^{\prime \prime}$-and $\left.6^{\prime \prime}-\mathrm{H}\right), 2.95\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}\right.$-and $\left.6^{\prime \prime}-\mathrm{H}\right), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$, $3.98\left(1 \mathrm{H}, \mathrm{d}, J 10.1\right.$, allyl $\left.\mathrm{CH}_{2}\right), 4.07\left(1 \mathrm{H}, \mathrm{d}, J 10.0\right.$, allyl $\left.\mathrm{CH}_{2}\right)$, $4.46\left(1 \mathrm{H}, \mathrm{d}, J 9.6,1^{\prime}-\mathrm{H}\right), 6.49\left(1 \mathrm{H}, \mathrm{dd}, J 9.6\right.$ and $\left.1.4,2^{\prime}-\mathrm{H}\right), 7.19$ $(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.38(3 \mathrm{H}, \mathrm{m}, p-\mathrm{and} m-\mathrm{Ph}), 7.50(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Ph})$ and 9.78 ($\left.1 \mathrm{H}, \mathrm{t}, J 2.6,2^{\prime \prime \prime}-\mathrm{H}\right) ; m / z(\mathrm{EI}) 506\left(\mathrm{M}^{+},<0.1 \%\right), 491$ $\left(\mathrm{M}-\mathrm{CH}_{3}, 0.1\right), 446\left(\mathrm{M}-\mathrm{CH}_{3} \mathrm{O}-\mathrm{CHO}, 0.1\right), 429(0.1)$ and 389 (0.3)
(2E)-Methyl 3-[Dimethyl(phenyl)silyl]-2-\{(E)-1'-[2"-(1,3-dioxan-2-ylmethyl)-1", $3^{\prime \prime}$-dithian- $\left.2^{\prime \prime}-y l\right]-3^{\prime}$-methyl-4'-oxopent-$2^{\prime}$-enyloxymethyl \} propenoate 26.-A solution of keto aldehyde $25(0.140 \mathrm{~g}, 0.277 \mathrm{mmol})$, propane-1,3-diol $\left(0.020 \mathrm{~cm}^{3}, 0.021 \mathrm{~g}\right.$, 0.30 mmol), and PPTS (5 mg) in dry benzene was heated at reflux with azeotropic removal of water for 4 h . The flask contents were then cooled, poured into saturated aq. sodium hydrogen carbonate $\left(10 \mathrm{~cm}^{3}\right)$, and extracted with diethyl ether ($3 \times 20 \mathrm{~cm}^{3}$). The combined extracts were dried over anhydrous sodium sulfate and concentrated. The resulting oil was dissolved in aq. acetone ($20 \mathrm{~cm}^{3} ; 2 \% \mathrm{v} / \mathrm{v}$), PPTS (5 mg) was added, and the solution was heated at reflux for 16 h . After cooling the flask's contents were poured into saturated aq. sodium hydrogencarbonate $\left(10 \mathrm{~cm}^{3}\right)$ and extracted with diethyl ether ($3 \times 20 \mathrm{~cm}^{3}$). The combined extracts were dried over anhydrous sodium sulfate and concentrated. Flash chromato-
graphy (50% diethyl ether-light petroleum) gave the 1,3dioxane $26(0.200 \mathrm{~g}, 78 \%)$ as an oil (Found: $\mathrm{M}^{+}, 564.2040$. $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{SiS}_{2}$ requires $\mathrm{M}, 546.2036$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 2951$, 2922, 2853, 2249, 1715, 1426, 1371, 1347, 1303, 1275, 1133, 1091, $1058,992,911$ and $837 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.46(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Ph} \mathrm{Me}_{2} \mathrm{Si}\right), 1.32\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.75\left(3 \mathrm{H}, \mathrm{d}, J 1.4,3^{\prime}-\mathrm{Me}\right)$, $1.93\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH} H\right.$ and $\left.5^{\prime \prime}-\mathrm{H}_{2}\right), 2.04(1 \mathrm{H}, \mathrm{dd}, J 15.4$ and 3.6, $\left.1^{\prime \prime \prime}-\mathrm{H}\right), 2.17\left(1 \mathrm{H}, \mathrm{dd}, J 15.4\right.$ and $\left.3.5,1^{\prime \prime \prime}-\mathrm{H}\right), 2.31\left(3 \mathrm{H}, \mathrm{s}, 5^{\prime}-\right.$ H_{3}), $2.7\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}\right.$ - and $\left.6^{\prime \prime}-\mathrm{H}\right), 3.0\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}\right.$ - and $\left.6^{\prime \prime}-\mathrm{H}\right), 3.77$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 4.00(1 \mathrm{H}, \mathrm{d}, J 9.9$, allyl CH_{2}), $4.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 4.05(1 \mathrm{H}, \mathrm{d}, J 10.0$, allyl $\left.\mathrm{CH}_{2}\right), 4.52\left(1 \mathrm{H}, \mathrm{d}, J 9.6,1^{\prime}-\mathrm{H}\right), 4.90\left(1 \mathrm{H}, \mathrm{t}, J 3.9,2^{\prime \prime \prime}-\mathrm{H}\right), 6.65(1$ H , dd, $J 9.7$ and $\left.1.3,2^{\prime}-\mathrm{H}\right), 7.16(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.37(3 \mathrm{H}, \mathrm{m}, p$ - and $m-\mathrm{Ph})$ and $7.50(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Ph}) ; m / z(\mathrm{EI}) 564\left(\mathrm{M}^{+}, 0.4 \%\right), 549$ $\left(\mathrm{M}-\mathrm{CH}_{3},<0.1\right), 490(0.1), 410(0.1)$ and 346 (1.2).
(2E)-Methyl $2-\left\{(\mathrm{E})-4^{\prime}-(\right.$ tert-Butyldimethylsilyl $)-1^{\prime}-\left[2^{\prime \prime}-(1,3-d i-\right.$ oxan-2-ylmethyl) $-1^{\prime \prime}, 3^{\prime \prime}$-dithian $-2^{\prime \prime}-y[]-3^{\prime}$-methylpenta $-2^{\prime}, 4^{\prime}-$ dienyloxymethyl $\}$-3-[dimethyl(phenyl)silyl]propenoate 7.-tert-Butyldimethylsilyl triflate $\left(0.010 \mathrm{~cm}^{3}, 44 \mu \mathrm{~mol}\right)$ was added dropwise to a stirred solution of enone $26(0.010 \mathrm{~g}, 17.3 \mu \mathrm{~mol})$ and triethylamine $\left(0.012 \mathrm{~cm}^{3}, 88 \mu \mathrm{~mol}\right)$ in dry dichloromethane $\left(2 \mathrm{~cm}^{3}\right)$ under argon at $-20^{\circ} \mathrm{C}$. After the reaction mixture had been stirred at $-20^{\circ} \mathrm{C}$ for 0.5 h , saturated aq. sodium hydrogen carbonate $\left(0.010 \mathrm{~cm}^{3}\right)$ was added and the flask was allowed to warm to ambient temperature. Anhydrous sodium sulfate was added and the mixture was stirred vigorously for 15 min , filtered, and concentrated under reduced pressure. Flash chromatography (40% diethyl ether-light petroleum doped with 1% triethylamine) gave the silyl enol ether $7(0.0112 \mathrm{~g}, 95 \%$) (Found: $\mathrm{M}^{+}, \quad 678.2900 . \mathrm{C}_{34} \mathrm{H}_{54} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{~S}_{2}$ requires $\mathrm{M}, \quad 678.2900$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3046,2952,2927,2891,2854,2731,1719,1595$, $1459,1426,1375,1316,1250,1222,1134,1115,1094,1059,1040$, $1019,1004,939$ and $893 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.18(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Bu}^{t} \mathrm{Me}_{2} \mathrm{Si}\right), 0.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \mathrm{Me}_{2} \mathrm{Si}\right), 0.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ph} \mathrm{Me}_{2} \mathrm{Si}\right), 0.46$ (3 $\left.\mathrm{H}, \mathrm{s}, \mathrm{Ph} \mathrm{Me}_{2} \mathrm{Si}\right), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{2} \mathrm{Me}_{2} \mathrm{Si}\right), 1.28\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, $1.74\left(3 \mathrm{H}, \mathrm{d}, J 1.1,3^{\prime}-\mathrm{Me}\right), 1.87\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}_{2}\right), 1.98(1 \mathrm{H}, \mathrm{dd}, J 15.1$ and $\left.3.9,1^{\prime \prime \prime}-\mathrm{H}\right), 2.03\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.11(1 \mathrm{H}, \mathrm{dd}, J 15.2$ and $\left.3.8,1^{\prime \prime \prime}-\mathrm{H}\right), 2.58\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}\right.$ - or $\left.6^{\prime \prime}-\mathrm{H}\right), 2.66\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime \prime}\right.$ - or $\left.4^{\prime \prime}-\mathrm{H}\right)$, $3.04\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}\right.$ - and $\left.6^{\prime \prime}-\mathrm{H}\right), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$, $3.78(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.89\left(1 \mathrm{H}, \mathrm{d}, J 9.9\right.$, allyl $\left.\mathrm{CH}_{2}\right), 4.04(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 4.08\left(1 \mathrm{H}, \mathrm{d}, J 10.1\right.$, allyl CH 2) , $4.34\left(1 \mathrm{H}, \mathrm{d}, J 0.9,5^{\prime}-\right.$ $\mathrm{H}), 4.43\left(1 \mathrm{H}, \mathrm{d}, J 10.2,1^{\prime}-\mathrm{H}\right), 4.49\left(1 \mathrm{H}, \mathrm{d}, J 1.1,5^{\prime}-\mathrm{H}\right), 4.90(1 \mathrm{H}, \mathrm{t}, J$ $\left.3.8,2^{\prime \prime \prime}-\mathrm{H}\right), 6.23\left(1 \mathrm{H}, \mathrm{dd}, J 10.2\right.$ and $\left.1.0,2^{\prime}-\mathrm{H}\right), 7.11(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$, $7.34(3 \mathrm{H}, \mathrm{m}, p$ - and $m-\mathrm{Ph})$ and $7.50(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Ph}) ; m / z$ (EI) 678 $\left(\mathrm{M}^{+}, 0.1 \%\right), 603(0.1), 490(0.1)$ and 459 (2.1).
(1R*,3aR*,7aR*)-Methyl 6-(tert-Butyldimethylsiloxy)-1-[2-(1,3-dioxan-2-ylmethyl)-1,3-dithian-2-yl]-1,4,5,7a-tetrahydro3 H -isobenzofuran-3a-carboxylate 28.-A solution of the triene 2 $\left(4.58 \mathrm{~g}, 8.63 \mathrm{mmol}\right.$) in anhydrous toluene ($350 \mathrm{~cm}^{3}$) was heated at reflux for 7 h . After cooling, the solvent was removed under reduced pressure and the residue was purified by flash chromatography (gradient elution, $40-70 \%$ diethyl ether-light petroleum) to give the cyclised product $28(3.85 \mathrm{~g}, 84 \%)$ as a pale yellow oil (Found: C, 56.3; H, 8.1. $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{6} \mathrm{~S}_{2} \mathrm{Si}$ requires C, $56.57 ; \mathrm{H}$, 7.98%); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2951,2929,2855,1729,1664,1459$, $1258,1230,1197,1133,1050,878,840$ and $780 ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$; CDCl_{3}) $0.12(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}), 0.14(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}), 0.91(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Bu}^{\mathrm{S}} \mathrm{Si}\right)$, $1.31-1.34\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{HCH}_{2} \mathrm{O}\right), 1.94-2.16(7 \mathrm{H}, \mathrm{m}, 4-$ and $5-\mathrm{H}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}$ and $\left.\mathrm{CH} \mathrm{CH}_{2} \mathrm{O}\right), 2.26(1 \mathrm{H}, \mathrm{dd}, J 15.2$, $\left.3.5,1^{\prime \prime}-\mathrm{H}\right), 2.33\left(1 \mathrm{H}, \mathrm{dd}, J 15.2,4.2,1^{\prime \prime}-\mathrm{H}\right), 2.74-2.82(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{~S}\right)$, 2.88-2.93 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~S}$), $3.52(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 6.5,7 \mathrm{a}-\mathrm{H})$, $3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.76(1 \mathrm{H}, \mathrm{d}, J 7.0,1-\mathrm{H}), 3.79(1 \mathrm{H}, \mathrm{dd}, J$ 12.5, 2.1, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $2.84\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.0,2.1, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right.$), 4.07 $(1 \mathrm{H}, \mathrm{d}, J 8.5,3-\mathrm{H}), 4.06-4.11\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.24(1 \mathrm{H}, \mathrm{d}, J$ $7.9,3-\mathrm{H}), 4.93\left(1 \mathrm{H}, \mathrm{t}, J 3.9,2^{\prime \prime}-\mathrm{H}\right)$ and $5.09(1 \mathrm{H}, \mathrm{d}, J 4.3,7-\mathrm{H})$; $m / z(E I) 530\left(\mathrm{M}^{+}\right), 423,251,219,87$ and 73.
(1R*,3aS*,4S*,7aR ${ }^{*}$)-Methyl 6-(tert-Butyldimethylsiloxy)-1[$2^{\prime}-\left(2^{\prime \prime}, 2^{\prime \prime}-\right.$ dimethoxyethyl $)-1^{\prime}, 3^{\prime}-$ dithian- $\left.2^{\prime}-y l\right]-4-[$ dimethyl-(phenyl)silyl]-1,4,5,7a-tetrahydro-3H-isobenzofuran-3a-carboxylate 30 and its ($\left.1 \mathrm{R}^{*}, 3 \mathrm{aR}^{*}, 4 \mathrm{R}^{*}, 7 \mathrm{aR}^{*}\right)$-Isomer 29.- A solution of the triene $3(42 \mathrm{mg}, 64 \mu \mathrm{~mol})$ in anhydrous toluene (2 cm^{3}) was heated to reflux under argon for 14 h . After cooling, the solvent was removed under reduced pressure to obtain the crude cycloadducts as a yellow oil (as a 3.4:1 mixture of stereoisomers 30 and 29). Purification of the residue by flash chromatography (25% diethyl ether-light petroleum) gave, in order of elution, the pure bicycle $\mathbf{3 0}(13.4 \mathrm{mg}, 32 \%$) as an oil [Found: ($\mathrm{M}-\mathrm{MeOH}$), 620.2492. $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{~S}_{2} \mathrm{Si}_{2}$ requires $m / z, 620.2482] ; v_{\max }($ film $) / \mathrm{cm}^{-1} 2951,2927,2854,1726,1674$, 1426, 1359, 1250, 1193, 1115, 1068, 836, 776 and 701; $\delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.09(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.285(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.29(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 1.80-2.01\left(6 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 1^{\prime \prime}-\mathrm{H}\right.$, and $5-\mathrm{and}$ $5^{\prime}-\mathrm{H}_{2}$), $2.10\left(1 \mathrm{H}, \mathrm{dd}, J 4.5,15.0,1^{\prime \prime}-\mathrm{H}\right), 2.58(1 \mathrm{H}$, ddd, $J 2.8,6.6$, $13.9,6^{\prime}-$ or $\left.4^{\prime}-\mathrm{H}\right), 2.66\left(1 \mathrm{H}\right.$, ddd, $J 3.0,6.9,13.7,4^{\prime}$ - or $\left.6^{\prime}-\mathrm{H}\right), 3.03$ (1 H , ddd, $J 2.9,10.2,14.1,6^{\prime}-$ or $4^{\prime}-\mathrm{H}$), 3.07 (1 H , ddd, $J 2.7,9.8$, $13.8,4^{\prime}$ - or $\left.6^{\prime}-\mathrm{H}\right), 3.25(1 \mathrm{H}, \mathrm{v}$ br t, $J 5.5,7 \mathrm{a}-\mathrm{H}), 3.28(1 \mathrm{H}, \mathrm{d}, J 9.2$, $3-\mathrm{H}$), 3.30 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.32 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.42(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 3.80(1 \mathrm{H}, \mathrm{d}, J 5.91-\mathrm{H}), 4.38(1 \mathrm{H}, \mathrm{d}, J 9.1,3-\mathrm{H}), 4.75(1$ $\left.\mathrm{H}, \mathrm{t}, J 4.2,2^{\prime \prime}-\mathrm{H}\right), 4.91(1 \mathrm{H}, \mathrm{dd}, J 1.9,4.8,7-\mathrm{H}), 7.38-7.31(3 \mathrm{H}, \mathrm{m}$, Ph) and 7.50-7.44 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m/z (EI) 621 (M - OMe, 0.1%), 620 (M - MeOH, 0.1), $445\left[\mathrm{M}-\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~S}_{2}\right) \mathrm{CCH}_{2} \mathrm{CH}(\mathrm{OMe})_{2}\right.$, 0.4], 223 (0.8), $207\left[\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~S}_{2}\right) \mathrm{CCH}_{2} \mathrm{CH}(\mathrm{OMe})_{2}, 0.3\right], 149$ (6.4), 101 (2.4), $75\left[\mathrm{CH}(\mathrm{OMe})_{2}, 2.3\right], 72(24)$ and $59\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, 81\right)$; and a mixture of bicycles 30 and $29(18.7 \mathrm{mg}, 45 \%$, as a $\sim 1.5: 1$ mixture). The ${ }^{1} \mathrm{H}$ NMR spectrum of isomer 29 was obscured by signals from the major isomer. Characterisation of the minor stereoisomer was carried out after hydrolysis and diastereoisomeric separation by flash chromatography (vide infra).
($1 \mathrm{R}^{*}, 3 \mathrm{aR}^{*}, 8 \mathrm{bR} \mathrm{R}^{*}$)-Methyl $1-\left[2-\left(2^{\prime \prime}, 2^{\prime \prime}\right.\right.$-Dimethoxyethyl $)-1,3-$ dithian-2-yl]-1,4,5,7,8,8b-hexahydro-3H-benzo $\left[1,2-\mathrm{b}: 3,4-\mathrm{c}^{\prime}\right]$ -difuran-3a-carboxylate 32.-Tebbe reagent ($720 \mathrm{~mm}^{3}$ of a freshly prepared $0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in toluene, 0.36 mmol) was added dropwise during 20 min to a stirred solution of the lactone $21(144 \mathrm{mg}, 0.33 \mathrm{mmol})$ and pyridine ($10 \mathrm{~mm}^{3}, 0.12$ mmol) in a mixture of toluene ($0.56 \mathrm{~cm}^{3}$) and THF ($0.28 \mathrm{~cm}^{3}$) at $-40^{\circ} \mathrm{C}$ under argon. The dark red solution was stirred at $-40^{\circ} \mathrm{C}$ for 15 min , then was allowed to warm slowly to $-15^{\circ} \mathrm{C}$ during 2 h . The reaction was quenched by addition of 15% aq. sodium hydroxide $\left(0.1 \mathrm{~cm}^{3}\right)$ to the vigorously stirred mixture and consequent warming of the mixture to room temperature. After effervescence had ceased (5 min), diethyl ether ($8 \mathrm{~cm}^{3}$) was added, and the orange mixture was dried over anhydrous sodium sulfate and filtered. The solvent was removed under reduced pressure and the orange residue was filtered through basic alumina (activity grade III; $4.2 \mathrm{~g} ; 60 \%$ diethyl ether-light petroleum) to obtain the crude triene 4 as a yellow oil. The very unstable triene was used directly without further purification. An analytical sample was purified by flash chromatography (basic alumina; 60% diethyl ether-light petroleum), $v_{\max }$ (film)/ $\mathrm{cm}^{-1} 3052,2927,1720,1675,1638,1438,1378,1270,1196,1118$, 1075, 962 and 736; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right.$) 1.47-1.64 ($2 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}$ H_{2}), 2.32-2.69 ($6 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}-, 6^{\prime \prime}$ - and $\left.4^{\prime \prime \prime}-\mathrm{H}_{2}\right) 2.49(1 \mathrm{H}, \mathrm{dd}, J 3.8$, $\left.14.8,1^{\prime \prime \prime}-\mathrm{H}\right), 2.74\left(1 \mathrm{H}, \mathrm{dd}, J 5.1,14.8,1^{\prime \prime \prime}-\mathrm{H}\right), 3.26(3 \mathrm{H}, \mathrm{s}$, OMe), 3.28 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.38 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$), $3.71(1 \mathrm{H}, \mathrm{br} \mathrm{q}$, $\left.J 7.8,5^{\prime \prime \prime \prime}-\mathrm{H}\right), 3.78\left(1 \mathrm{H}, \mathrm{dt}, J 5.6,8.4,5^{\prime \prime \prime \prime}-\mathrm{H}\right), 4.27(1 \mathrm{H}, \mathrm{dt}, J 13.9$, 1.5 , allylic $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.40\left(1 \mathrm{H}, \mathrm{dt}, J 13.9,1.7\right.$, allylic $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.53$ $\left(1 \mathrm{H}, \mathrm{d}, J 9.6,1^{\prime}-\mathrm{H}\right), 4.60\left(1 \mathrm{H}, \mathrm{d}, J 2.0\right.$, enol ether $\left.\mathrm{CH}_{2}\right), 4.63(1 \mathrm{H}$, d, $J 2.0$, enol ether CH_{2}), $5.09\left(1 \mathrm{H}, \mathrm{dd}, J 3.8,5.12^{\prime \prime \prime}-\mathrm{H}\right), 6.00(1$ $\mathrm{H}, \mathrm{q}, J 1.8,3-\mathrm{H}), 6.35(1 \mathrm{H}, \mathrm{q}, J 1.5,3-\mathrm{H})$ and $6.51(1 \mathrm{H}, \mathrm{dt}, J 9.6$, 2.6, $2^{\prime}-\mathrm{H}$).

A solution of the crude triene 4 in anhydrous toluene (1.5 cm^{3}) was heated to $60^{\circ} \mathrm{C}$ under argon for 5 h . After cooling, the solvent was removed under reduced pressure and the residue
was purified by flash chromatography (basic alumina, activity grade III; $4 \mathrm{~g} ; 60 \%$ diethyl ether-light petroleum) to give the tricycle 32 ($25.5 \mathrm{mg}, 18 \%$ from 21, contaminated with $\sim 11 \%$ of an impurity, probably the C-3a epimer) as an oil [Found: (M $\mathrm{MeOH})$, 398.1211. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{~S}_{2}$ requires $\left.m / z, ~ 398.1222\right]$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2946,1728,1619,1433,1329,1226,1199,1119$, 1050 and $813 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right.$; major isomer only) 1.47 $1.55\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 1.56-1.66\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 1.82(1 \mathrm{H}, \mathrm{ddd}, J 5.7$, $\left.7.8,13.3,4-\mathrm{H}_{8}\right), 1.90-1.99(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.05(1 \mathrm{H}, \mathrm{dt}, J 13.3,5.9$, $\left.4-\mathrm{H}_{\alpha}\right), 2.12-2.22(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.41\left(1 \mathrm{H}, \mathrm{dd}, J 3.5,14.8,1^{\prime \prime}-\mathrm{H}\right)$, $2.44-2.55\left(3 \mathrm{H}, \mathrm{m}, 4^{\prime}-\right.$ and $6^{\prime}-\mathrm{H}$ and $\left.8-\mathrm{H}_{\alpha}\right) 2.72(1 \mathrm{H}, \mathrm{dd}, J 4.9$, $\left.14.8,1^{\prime \prime}-\mathrm{H}\right), 2.63-2.77\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{B}}\right.$ and 6^{\prime} - or $\left.4^{\prime}-\mathrm{H}\right), 2.81(1 \mathrm{H}$, ddd, $J 3.9,8.0,10.0,4^{\prime}$-or $6^{\prime}-\mathrm{H}$), 3.34 ($6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}$), 3.37 (3 $\left.\mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.62\left(1 \mathrm{H}, \mathrm{d}, J 8.5,3-\mathrm{H}_{\mathrm{B}}\right), 4.03(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 5.7$, $8 \mathrm{~b}-\mathrm{H}), 4.07\left(2 \mathrm{H}, \mathrm{brt}, J 9.3,7-\mathrm{H}_{2}\right), 4.34(1 \mathrm{H}, \mathrm{d}, J 5.7,1-\mathrm{H}), 4.58$ $\left(1 \mathrm{H}, \mathrm{d}, J 8.5,3-\mathrm{H}_{\alpha}\right)$ and $5.14\left(1 \mathrm{H}, \mathrm{dd}, J 3.6,5.0,2^{\prime \prime}-\mathrm{H}\right)$; $\delta_{\mathrm{c}}(125.8$ $\mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$; major isomer only) 174.4 ($1 \mathrm{C}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$), 152.1 (1 C, s, C-5a), 105.0 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 103.3 ($1 \mathrm{C}, \mathrm{d}, \mathrm{C}-2^{\prime \prime}$), 93.4 ($1 \mathrm{C}, \mathrm{d}, \mathrm{C}-$ 1), 73.9 and 69.1 ($2 \mathrm{C}, \mathrm{t}, \mathrm{C}-3,-7$), 55.2 and 55.0 ($2 \mathrm{C}, \mathrm{s}, \mathrm{C}-3 \mathrm{a},-2^{\prime}$), 53.2 ($1 \mathrm{C}, \mathrm{q}, \mathrm{OMe}$), 52.3 ($1 \mathrm{C}, \mathrm{q}, \mathrm{OMe}$), 51.8 ($1 \mathrm{C}, \mathrm{q}, \mathrm{OMe}$), 44.3 ($1 \mathrm{C}, \mathrm{d}, \mathrm{C}-8 \mathrm{~b}$), $41.0(1 \mathrm{C}, \mathrm{t}), 34.2(1 \mathrm{C}, \mathrm{t}), 28.3(1 \mathrm{C}, \mathrm{t}), 26.9(1 \mathrm{C}, \mathrm{t})$, $26.7(1 \mathrm{C}, \mathrm{t}), 24.9(1 \mathrm{C}, \mathrm{t})$ and $20.6(1 \mathrm{C}, \mathrm{t}) ; m / z(\mathrm{EI}) 430\left(\mathrm{M}^{+}\right.$, 0.3%), 398 ($\mathrm{M}-\mathrm{MeOH}, 2$), 367 (0.2), 355 [$\mathrm{M}-\mathrm{CH}(\mathrm{OMe})_{2}$, $0.1], 341\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OMe})_{2}, 1.9\right], 223\left[\mathrm{M}-\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~S}_{2}\right)-\right.$ $\left.\mathrm{CCH}_{2} \mathrm{CH}(\mathrm{OMe})_{2}, 2.5\right], 207\left[\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~S}_{2}\right) \mathrm{CCH}_{2} \mathrm{CH}(\mathrm{OMe})_{2}, 21\right]$, 175 (4), 135 (7.9) and 75 [$\left.\mathrm{CH}(\mathrm{OMe})_{2}, 100\right]$.
($1 \mathrm{R}^{*}, 3 \mathrm{aR}^{*}, 4 \mathrm{R}^{*}, 7 \mathrm{aR}^{*}$)-Methyl 6-tert-Butyldimethylsiloxy-4-dimethyl(phenyl)silyl-1-[2'-(1,3-dioxan-2-ylmethyl) $-1^{\prime}, 3^{\prime}-$ dithian-2'-yl]-7-methyl-1,4,5,7a-tetrahydro-3H-isobenzofuran-3a-carboxylate 37.-A solution of the triene $7(0.0112 \mathrm{~g}, 16.5$ $\mu \mathrm{mol})$ in anhydrous toluene ($2 \mathrm{~cm}^{3}$) was heated at reflux under argon for 3 h . After cooling, the solvent was removed under reduced pressure to obtain the crude cycloadducts as an oil. Purification of the residue by flash chromatography (40% diethyl ether-light petroleum doped with 1% triethylamine) gave title compound $37(0.0086 \mathrm{~g}, 77 \%)$ (Found: $\mathrm{M}^{+}, 678.2900$. $\mathrm{C}_{34} \mathrm{H}_{54} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{~S}_{2}$ requires M, 678.2900); $v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1} 2925$, $2853,2040,1717,1652,1459,1425,1375,1317,1251,1202,1132$, 1038, 930 and $837 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.10(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Bu}^{t} \mathrm{Me}_{2} \mathrm{Si}\right), 0.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \mathrm{Me}_{2} \mathrm{Si}\right), 0.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ph} \mathrm{Me}_{2} \mathrm{Si}\right), 0.48$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ph} \mathrm{Me}_{2} \mathrm{Si}$), 0.89 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{2} \mathrm{Me}_{2} \mathrm{Si}$), $1.30(1 \mathrm{H}, \mathrm{m}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2}$), $1.80(3 \mathrm{H}, \mathrm{d}, J 1.1,7-\mathrm{Me}), 1.87\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 1.99$ $\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 2.02(1 \mathrm{H}, \mathrm{dd}, J 15.6$ and $8.1,5-\mathrm{H}), 2.07(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.2-2.35\left(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 5-\mathrm{H}\right.$ and $\left.1^{\prime \prime}-\mathrm{H}_{2}\right), 2.64(1 \mathrm{H}$, $\mathrm{m}, 4^{\prime}-$ or $\left.6^{\prime}-\mathrm{H}\right), 2.75\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right.$ or $\left.4^{\prime}-\mathrm{H}\right), 2.84\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}\right.$ - and $6^{\prime}-$ H), $3.02(1 \mathrm{H}, \mathrm{brd}, J 8.9,7 \mathrm{a}-\mathrm{H}), 3.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$, $3.64(1 \mathrm{H}$, d, $J 8.9,3-\mathrm{H}), 3.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.87(1 \mathrm{H}, \mathrm{d}, J 8.9,3-\mathrm{H})$, $4.10\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 4.77(1 \mathrm{H}, \mathrm{d}, J 8.9,1-\mathrm{H}), 4.91(1 \mathrm{H}, \mathrm{dd}$, $J 15.0$ and $\left.3.0,2^{\prime \prime}-\mathrm{H}\right), 7.33(3 \mathrm{H}, \mathrm{m}, p$ - and $m-\mathrm{Ph})$ and $7.56(2 \mathrm{H}, \mathrm{m}$, $o-\mathrm{Ph}) ; m / z(\mathrm{EI}) 678\left(\mathrm{M}^{+}, 1.1 \%\right), 663\left(\mathrm{M}-\mathrm{CH}_{3}, 0.1\right), 647(\mathrm{M}-$ $\left.\mathrm{CH}_{3} \mathrm{O}, 0.1\right), 619(0.1), 603(0.7), 589(0.4)$ and $572(0.8)$.
$\left(1 \mathrm{R}^{*}, 3 \mathrm{aR}^{*}, 7 \mathrm{aR}^{*}\right)$-Methyl 1-[2-(Formylmethyl)-1,3-dithian-2$y l]$-6-oxoperhydroisobenzofuran-3a-carboxylate 39.-A solution of the silyl enol ether $28(87.3 \mathrm{mg}, 0.164 \mathrm{mmol})$ in acetic acid-THF-water $\left(3: 1: 1 ; 20 \mathrm{~cm}^{3}\right)$ was heated to $55^{\circ} \mathrm{C}$ for 16 h . After cooling, the flask contents were concentrated and the residue was partitioned between dichloromethane ($20 \mathrm{~cm}^{3}$) and water ($20 \mathrm{~cm}^{3}$) and solid sodium hydrogen carbonate was added until effervescence ceased. The aqueous layer was extracted with dichloromethane ($3 \times 20 \mathrm{~cm}^{3}$) and the combined organic layers were dried over anhydrous sodium sulfate and concentrated. Purification of the residue by flash chromatography (gradient elution, 80-100\% diethyl ether-light petroleum) gave the keto aldehyde $39(50.0 \mathrm{mg}, 85 \%)$ as an oil (Found: $\mathrm{M}^{+}, 358.0917 . \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~S}_{2}$ requires $\mathrm{M}, 358.0909$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2949,1712,1425,1278,1229,1120,1048$ and

909; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.95-2.08\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right.$ and $\left.5-\mathrm{H}\right)$, 2.31-2.39 ($3 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$ and $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}$), $2.62(1 \mathrm{H}, \mathrm{dd}, J 15.6,7.0$, 7-H), 2.71 ($1 \mathrm{H}, \mathrm{dd}, J 16.4,2.4,1^{\prime \prime}-\mathrm{H}$), 2.76-2.84 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~S}$, $5-\mathrm{H}$, and including dd, $\left.J 16.4,1.1,1^{\prime \prime}-\mathrm{H}\right), 2.92-2.98(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{~S}\right), 3.28(1 \mathrm{H}, \mathrm{dd}, J 14.0,7.0,7 \mathrm{a}-\mathrm{H}), 3.67(1 \mathrm{H}, \mathrm{d}, J 9.3,3-\mathrm{H})$, $3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.05(1 \mathrm{H}, \mathrm{d}, J 7.7,1-\mathrm{H}), 4.33(1 \mathrm{H}, \mathrm{d}, J 9.3$, $3-\mathrm{H}$) and $9.83\left(1 \mathrm{H}, \mathrm{t}, J 2.9,2^{\prime \prime}-\mathrm{H}\right) ; m / z(\mathrm{EI}) 358\left(\mathrm{M}^{+}\right), 340$ ($\mathrm{M}-\mathrm{H}_{2} \mathrm{O}$), 327, 233, 197 and 161.
($2 \mathrm{aR}^{*}, 5 \mathrm{aR}^{*}, 6 \mathrm{~S}^{*}, 8 \mathrm{aR}^{*}, 8 \mathrm{bR}^{*}$)-Methyl 6-Hydroxy-5-oxoperhydronaphtho $[1,8$-bc $]$ furan-8-spiro- $2^{\prime}-\left(1^{\prime}, 3^{\prime}\right.$-dithiane) -2 a -carboxylate 40 and its $\left(2 \mathrm{aR}^{*}, 5 \mathrm{aR}^{*}, 6 \mathrm{R}^{*}, 8 \mathrm{bR}^{*}\right)$-Isomer 41.-A solution of potassium hydroxide in methanol ($555 \mathrm{~mm}^{3} ; 0.244$ $\mathrm{mol} \mathrm{dm}{ }^{-3}$) was added to a stirred solution of the keto aldehyde $39(32.4 \mathrm{mg}, 90.4 \mu \mathrm{~mol})$ in anhydrous methanol ($2 \mathrm{~cm}^{3}$) at room temperature. After being stirred for 1 h the reaction mixture was quenched with aq. hydrochloric acid ($2 \mathrm{~cm}^{3} ; 1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$) and water $\left(10 \mathrm{~cm}^{3}\right)$. The mixture was extracted with dichloromethane ($4 \times 10 \mathrm{~cm}^{3}$), and the combined extracts were washed with saturated aq. sodium hydrogencarbonate ($10 \mathrm{~cm}^{3}$), dried over anhydrous sodium sulfate, and then concentrated. Purification of the residue by flash chromatography (gradient elution, $60-100 \%$ diethyl ether-light petroleum) gave, in order of elution, the β-alcohol $\mathbf{4 0}(10.2 \mathrm{mg}, 31 \%$) as microcrystals, m.p. $185-195^{\circ} \mathrm{C}$ (Found: C, 53.8; H, 6.2. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~S}_{2}$ requires C, $53.61 ; \mathrm{H}, 6.19 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3502,2921,1725,1700,1426$, $1344,1274,1248,1151$ and $1074 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.85-$ 1.90 ($1 \mathrm{H}, \mathrm{dd}, J 13.8,12.0,7-\mathrm{H}_{\mathrm{B}}$), $1.96\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right.$), 2.06-2.12 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}$), $2.19-2.26(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.30-$ $2.35(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.39\left(1 \mathrm{H}\right.$, ddd, $\left.J 13.8,4.8,1.17-\mathrm{H}_{\alpha}\right), 2.53-2.63$ ($3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}$ and $\mathrm{CH}_{2} \mathrm{~S}$), $2.71\left(1 \mathrm{H}\right.$, ddd, $J 13.8,6.2,3.3, \mathrm{CH}_{2} \mathrm{~S}$), 3.24-3.31 ($3 \mathrm{H}, \mathrm{m}, 8 \mathrm{~b}$ - and $5 \mathrm{a}-\mathrm{H}$ and $\mathrm{CH}_{2} \mathrm{~S}$), $3.39(1 \mathrm{H}$, ddd, $J 13.8$, $\left.11.0,2.7, \mathrm{CH}_{2} \mathrm{~S}\right), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.88(1 \mathrm{H}, \mathrm{d}, J 11.6, \mathrm{OH})$, $3.89(1 \mathrm{H}, \mathrm{d}, J 8.8,2-\mathrm{H}), 3.92(1 \mathrm{H}, \mathrm{d}, J 11.1,8 \mathrm{a}-\mathrm{H}), 3.97-4.03$ $(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$ and $4.27(1 \mathrm{H}, \mathrm{d}, J 8.8,2-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (EI) $358\left(\mathrm{M}^{+}\right)$, $340\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 266,251,233,161,147,132,119$ and 106; and the α-alcohol $41(18.6 \mathrm{mg}, 57 \%)$ as rods, m.p. $131-135^{\circ} \mathrm{C}$ (Found: C, 53.5; H, 6.1. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~S}_{2}$ requires C, 53.61 ; H, 6.19%); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3446,2919,1709,1429,1326,1242$, 1196, 1136, 1075, 1036 and 734; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.87(1 \mathrm{H}, \mathrm{dd}, J$ $15.4,3.8,7-\mathrm{H}), 2.01-2.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 2.15-2.22(1 \mathrm{H}, \mathrm{m}$, 3- H_{B}) $2.29-2.33\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right), 2.54-2.65\left(3 \mathrm{H}, \mathrm{m}, 3-\right.$ and $4-\mathrm{H}_{\alpha}$ and 7-H), 2.82-2.92 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~S}$), 3.15-3.22 ($4 \mathrm{H}, \mathrm{m}, 5 \mathrm{a}-\mathrm{H}$, OH and $\left.\mathrm{CH}_{2} \mathrm{~S}\right), 3.46(1 \mathrm{H}$, ddd, $J 13.0,6.1,1.3,8 \mathrm{~b}-\mathrm{H}), 3.76(1 \mathrm{H}$, $\mathrm{d}, J 11.8,8 \mathrm{a}-\mathrm{H}), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.90(1 \mathrm{H}, \mathrm{d}, J 8.8,2-\mathrm{H})$, $4.27(1 \mathrm{H}, \mathrm{d}, J 8.8,2-\mathrm{H})$ and $4.46-4.49(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}) ; m / z(\mathrm{EI}) 358$ $\left(\mathrm{M}^{+}\right), 340\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 266,251,233,161,119,106$ and 82.
($\left.1 \mathrm{R}^{*}, 3 \mathrm{aR}^{*}, 4 \mathrm{R}^{*}, 7 \mathrm{aR}^{*}\right)-$ Methyl 4-Dimethyl(phenyl) silyl-1-[2'(formylmethyl) $1^{\prime}, 3^{\prime}$-dithian- $\left.2^{\prime}-y l\right]-6$-oxoperhydroisobenzo-furan-3a-carboxylate 42 and its $-1 \mathrm{R}^{*}, 3 \mathrm{aS}^{*}, 4 \mathrm{~S}^{*}, 7 \mathrm{aR}^{*}$)-Isomer 43.-Toluene-p-sulfonic acid monohydrate (PTSA) ($2 \mathrm{mg}, 10$ $\mu \mathrm{mol}$) was added to a solution of the mixture of silyl enol ethers 29 and $30(18.6 \mathrm{mg}, 28.5 \mu \mathrm{~mol})$ in 3% water-acetone ($1 \mathrm{~cm}^{3}$). The solution was heated to $50^{\circ} \mathrm{C}$ for 45 min and was then poured into saturated aq. sodium hydrogencarbonate $\left(5 \mathrm{~cm}^{3}\right)$. Extraction of the mixture with diethyl ether ($3 \times 10 \mathrm{~cm}^{3}$), drying over anhydrous magnesium sulfate, and evaporation of the solvent under reduced pressure gave a mixture of the diastereoisomeric ketoaldehydes. The diastereoisomers were separated by column chromatography (60% diethyl-light petroleum) to obtain the less polar, major ($1 \mathrm{R}^{*}, 3 \mathrm{aS}^{*}, 4 \mathrm{~S}^{*}, 7 \mathrm{aR}^{*}$) isomer $43(5.7 \mathrm{mg}, 41 \%)$ as an oil and the more polar, minor isomer 42 ($5.6 \mathrm{mg}, 40 \%$, contaminated with 13% of the $\mathrm{C}-3 \mathrm{a}, \mathrm{C}-4$ epimer) as an oil (Found: M^{+}, 492.1460. $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{~S}_{2} \mathrm{Si}$ requires $\mathrm{M}, 492.1461$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 2949,2913,1709,1425$, $1255,1202,1114,1016,816,735$ and $703 ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.42(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.46(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.93-2.03(2 \mathrm{H}, \mathrm{m}$,
$5^{\prime}-\mathrm{H}_{2}$), 2.18 ($1 \mathrm{H}, \mathrm{dd}, J 3.7,8.8,4-\mathrm{H}$), $2.35(1 \mathrm{H}, \mathrm{dd}, J 9.0,16.0$, $5-\mathrm{H}_{\mathrm{B}}$), 2.46 ($1 \mathrm{H}, \mathrm{dd}, J 2.1,16.2, \mathrm{CH}_{2} \mathrm{CHO}$), $2.56[1 \mathrm{H}$, ddd, $J 1.0$ (long-range coupling to $7-\mathrm{H}_{\alpha}$), 3.7, 16.1, $\left.5-\mathrm{H}_{\alpha}\right], 2.61(1 \mathrm{H}$, ddd, J 5.8, 9.6, 13.2, 7- H_{α}), 2.63 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.5,16.3, \mathrm{CH}_{2} \mathrm{CHO}$), 2.73 (1 H, ddd, J 4.1, 7.1, 14.3, $6^{\prime}-$ or $4^{\prime}-\mathrm{H}$), 2.78-2.93 (4 H, m, 7-H ${ }_{\alpha}$ $4^{\prime}-$ and $6^{\prime}-\mathrm{H}$ and 4^{\prime} - or $6^{\prime}-\mathrm{H}$), $3.17\left(1 \mathrm{H}, \mathrm{dd}, J 13.3,16.2,7-\mathrm{H}_{8}\right.$), $3.54\left(1 \mathrm{H}, \mathrm{d}, J 8.6,3-\mathrm{H}_{\alpha}\right), 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.91(1 \mathrm{H}, \mathrm{d}, J 8.6$, $3-\mathrm{H}_{\mathrm{B}}$), $4.40(1 \mathrm{H}, \mathrm{d}, J 9.6,1-\mathrm{H}), 7.35-7.42$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.55-7.49 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$) and $9.75(1 \mathrm{H}, \mathrm{dd}, J 2.2,3.4, \mathrm{CHO}) ; m / z$ (EI) 492 $\left(\mathrm{M}^{+}, 1.6 \%\right), 477(\mathrm{M}-\mathrm{Me}, 0.2), 474\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}, 0.3\right), 463$ ($\mathrm{M}-\mathrm{CHO}, 0.2$), 461 ($\mathrm{M}-\mathrm{OMe}, 0.2$), 449 ($\mathrm{M}-\mathrm{CH}_{2} \mathrm{CHO}$, 0.1), 433 ($\mathrm{M}-\mathrm{OMe}-\mathrm{CO}, 0.1$), 415 (M - $\mathrm{Ph}, 0.2$), 331 [$\mathrm{M}-$ $\left.\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~S}_{2}\right) \mathrm{CCH}_{2} \mathrm{CHO}, 26\right], 253$ (49), 193 (32), 161 [($\left.\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~S}_{2}\right) \mathrm{C}$ $\left.\mathrm{CH}_{2} \mathrm{CHO}, 74\right]$ and 135 ($\mathrm{PhMe}_{2} \mathrm{Si}, 100$).
(1R*,3aS*,4S*,7aR*)-Methyl 4-Dimethyl(phenyl)silyl-1-[2'-(formylmethyl)-1', 3^{\prime}-dithian- $\left.2^{\prime}-y l\right]$-6-oxoperhydroisobenzo-furan-3a-carboxylate 43.--PTSA ($1.7 \mathrm{mg}, 8.9 \mu \mathrm{~mol}$) was added to a solution of the silyl enol ether $\mathbf{3 0}(13.4 \mathrm{mg}, 20.5 \mu \mathrm{~mol})$ in 3% water-acetone ($1 \mathrm{~cm}^{3}$) and the solution was heated at $50^{\circ} \mathrm{C}$ for 4.5 h . After cooling, the solution was poured into saturated aq. sodium hydrogencarbonate ($5 \mathrm{~cm}^{3}$) and the mixture was extracted with diethyl ether ($3 \times 15 \mathrm{~cm}^{3}$). The combined organic layers were dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. Purification of the residue by flash chromatography (60% diethyl ether-light petroleum) afforded the keto aldehyde 43 ($9.2 \mathrm{mg}, 91 \%$) as an oil (Found: $\mathrm{M}^{+}, 492.1458 . \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{~S}_{2} \mathrm{Si}$ requires $\mathrm{M}, 492,1461$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3072,3045,2950,2915,2849,1711,1426,1251$, $1230,1113,1069,819,735$ and $703 ; \delta_{\mathbf{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.29$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 0.31 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $1.85-1.95$ ($\left.1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 1.97-2.05$ ($1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}$), $2.24\left(1 \mathrm{H}, \mathrm{dd}, J 14.3,17.7,5-\mathrm{H}_{\mathrm{ax}}\right), 2.31(1 \mathrm{H}, \mathrm{dd}, J$ 3.3, 14.2, 4-H), 2.41 ($1 \mathrm{H}, \mathrm{dd}, J 3.3,17.7,5-\mathrm{H}_{\mathrm{eq}}$), $2.52(1 \mathrm{H}, \mathrm{dd}, J$ 2.6, 16.6, CH2CHO), 2.56-2.62 (1 H, m, 7-H), 2.67 (1 H, dd, J2.6, 16.6, $\mathrm{CH}_{2} \mathrm{CHO}$), 2.67-2.75 ($2 \mathrm{H}, \mathrm{m}, 4^{\prime}-$ and $6^{\prime}-\mathrm{H}$), 2.94-3.03 (4 H , $\left.\mathrm{m}, 7-, 7 \mathrm{a}-, 4^{\prime}-\mathrm{and} 6^{\prime}-\mathrm{H}\right), 3.37(1 \mathrm{H}, \mathrm{d}, J 10.0,3-\mathrm{H}), 3.56(3 \mathrm{H}, \mathrm{s}$, OMe), 3.73 ($1 \mathrm{H}, \mathrm{d}, J 7.2,1-\mathrm{H}$), 4.47 ($1 \mathrm{H}, \mathrm{d}, J 9.9,3-\mathrm{H}$), 7.34-7.41 $(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.43-7.49(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $9.80(1 \mathrm{H}, \mathrm{t}, J 2.6$, CHO); m / z (EI) 492 (${ }^{+}, 2.8 \%$), 474 ($\mathrm{M}-\mathrm{H}_{2} \mathrm{O}, 6.7$), 460 ($\mathrm{M}-\mathrm{MeOH}, 0.2$), $459\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}-\mathrm{Me}, 0.3\right), 442(\mathrm{M}-$ $\left.\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 0.4\right), 415(\mathrm{M}-\mathrm{Ph}, 0.9), 397$ (0.9), 367 (4.9), 331 [M - $\left.\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~S}_{2}\right) \mathrm{CCH}_{2} \mathrm{CHO}, 4.6\right], 253$ (5.9), 229 (6.9), 161 $\left[\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~S}_{2}\right) \mathrm{CCH}_{2} \mathrm{CHO}, 61\right]$ and $135\left(\mathrm{PhMe}_{2} \mathrm{Si}, 100\right)$.
($2 \mathrm{aR}^{*}, 4 \mathrm{aR} \mathrm{S}^{*}, 7 \mathrm{aR}^{*} \mathrm{~S}^{*}, 8 \mathrm{R}^{*}, 10 \mathrm{aR}^{*}, 10 \mathrm{bR}^{*}$)-Methyl4a,8-Dihydroxyperhydronaphtho [1,8-bc:5.4a-b']difuran-10-spiro-2'-(1^{\prime},-3'-dithiane)-2a-carboxylate 44.-A solution of the tricycle 32 ($28 \mathrm{mg}, 65 \mu \mathrm{~mol}$) and PTSA ($10 \mathrm{mg}, 52.6 \mu \mathrm{~mol}$) in 2% wateracetone ($1 \mathrm{~cm}^{3}$) was heated at reflux for 4.5 h . After cooling, the solution was poured into saturated aq. sodium hydrogencarbonate ($2 \mathrm{~cm}^{3}$) and extracted with diethyl ether ($3 \times 5 \mathrm{~cm}^{3}$). The combined organic layers were washed with brine $\left(2 \mathrm{~cm}^{3}\right)$, dried over anhydrous magnesium sulfate, and concentrated. Purification of the residue by flash chromatography $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ afforded the diastereoisomeric tetracycles $44(11.5 \mathrm{mg}, 44 \%$, as an inseparable $1: 1$ mixture) as a foam (Found: $\mathbf{M}^{+}, 402.1162$. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires $\mathrm{M}, 402.1171$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3414,2949$, 2889, 1724, 1432, 1280, 1226, 1033, 911 and 732; m / z (EI) 402 ($\mathbf{M}^{+}, 38 \%$), 384 ($\mathrm{M}-\mathrm{H}_{2} \mathrm{O}, 13$), 370 ($\mathrm{M}-\mathrm{MeOH}, 23$), 342 (M - OMe - CO, 0.8), 241 (15.9), 223 (39), 161 (100) and 106 (76).
(2aR*,4aR*,7aR ${ }^{*}, 8 \mathrm{R}^{*}, 10 \mathrm{aR}^{*}, 10 \mathrm{bR}^{*}$)-Methyl 8-Hydroxy-4a-(2-hydroxyethoxy) perhydronaphtho [1,8-bc:5,4a-b']difuran-10-spiro-2'-($1^{\prime}, 3^{\prime}-$ dithiane $)$-2a-carboxylate 45.-A mixture of the hemiketals 44 ($70 \mathrm{mg}, 0.174 \mathrm{mmol}$), ethylene glycol ($150 \mathrm{~mm}^{3}$, $2.69 \mathrm{mmol})$ and PTSA ($4 \mathrm{mg}, 0.02 \mathrm{mmol}$) in benzene $\left(10 \mathrm{~cm}^{3}\right)$
was heated at reflux with azeotropic removal of water for 2 h . After cooling, the mixture was poured into saturated aq. sodium hydrogencarbonate ($10 \mathrm{~cm}^{3}$) and extracted with diethyl ether $\left(4 \times 15 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with brine ($10 \mathrm{~cm}^{3}$), dried over anhydrous magnesium sulfate, and concentrated. Flash chromatography of the residue $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ gave the ketal 45 ($49 \mathrm{mg}, 63 \%$) as a foam (Found: C, 53.7, H, 7.0. $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{~S}_{2}$ requires $\mathrm{C}, 53.79 ; \mathrm{H}, 6.77 \%$); $v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1} 3432$, 2949, 2885, 1724, 1433, 1285, 1228, 1085, 1035, 909 and 731; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.74(1 \mathrm{H}, \mathrm{dt}, J 14.7,6.4,4-$ or $3-\mathrm{H}), 1.86(1$ H , br dt, $J 12.8,9.8,7-\mathrm{H}), 1.91\left(2 \mathrm{H}, \mathrm{br}\right.$ t, $J 6.3,4$ - or $\left.3-\mathrm{H}_{2}\right), 2.04$ (2 H, br quint, $\left.J 5.7,5^{\prime}-\mathrm{H}_{2}\right), 2.25(1 \mathrm{H}, \mathrm{dt}, J 14.5,6.0,3-$ or $4-\mathrm{H}), 2.33$ ($1 \mathrm{H}, \mathrm{dd}, J 3.6,14.8,9-\mathrm{H}$), $2.36(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.53(1 \mathrm{H}, \mathrm{brdd}, J$ 6.2, 14.1, 9-H), 2.66 (1 H, ddd, $J 1.9,6.7,12.8,7-\mathrm{H}$), $2.84(1 \mathrm{H}, \mathrm{br}$ dt, $J 13.4,5.8,4^{\prime}$-or $\left.6^{\prime}-\mathrm{H}\right), 2.94$ (1 H, br dt, $J 14.0,5.8,6^{\prime}$ - or $4^{\prime}-\mathrm{H}$), $3.05(1 \mathrm{H}, \mathrm{d}, J 11.7,10 \mathrm{~b}-\mathrm{H}), 3.09\left(1 \mathrm{H}, \mathrm{brdt}, J 13.5,5.6,6^{\prime}-\right.$ or $4^{\prime}-$ H), 3.18 (1 H , br dt, $J 13.4,5.7,4^{\prime}-$ or $\left.6^{\prime}-\mathrm{H}\right), 3.42$ (1 H , br d, $J 7.7$, $\mathrm{OH})$, $3.61-3.65\left(1 \mathrm{H}, \mathrm{m}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.67-3.72(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.70(1 \mathrm{H}, \mathrm{d}, J 8.9,2-\mathrm{H}), 3.73-3.77(1 \mathrm{H}, \mathrm{m}$, $\mathrm{HCOH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$), 3.77-3.89 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$), $4.21(1 \mathrm{H}, \mathrm{br} \mathrm{dt}, J 3.3,7.0,8-\mathrm{H}), 4.23(1 \mathrm{H}, \mathrm{d}, J 11.7,10 \mathrm{a}-\mathrm{H})$ and 4.27 ($1 \mathrm{H}, \mathrm{d}, J 8.9,2-\mathrm{H}$); m / z (EI) 446 (${ }^{+}, 30 \%$), 428 (M $\left.\mathrm{H}_{2} \mathrm{O}, 0.6\right), 415(\mathrm{M}-\mathrm{OMe}, 0.8), 384\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}, 45\right]$, $366\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}-\mathrm{H}_{2} \mathrm{O}, 0.5\right], 353\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}-\right.$ OMe, 2.1], 278 (28), 223 (88), 161 (55) and 120 (100).
($\left.2 \mathrm{aR}^{*}, 4 \mathrm{aR}^{*}, 7 \mathrm{aR}^{*}, 8 \mathrm{R}^{*}, 10 \mathrm{aR}^{*} 10 \mathrm{bR}^{*}\right)$-Methyl $4 \mathrm{a}-[2-(3,5-$ Dinitrobenzoyloxy)ethoxy]-8-hydroxyperhydronaphtho-[1,8-bc:5,4a-b']difuran-10-spiro- 2^{\prime} - $1^{\prime}, 3^{\prime}$-dithiane)-2a-carboxylate 46. $-3,5$-Dinitrobenzoyl chloride ($23 \mathrm{mg}, 100 \mu \mathrm{~mol}$) was added to a stirred solution of the alcohol $45(30 \mathrm{mg}, 67 \mu \mathrm{~mol})$ and pyridine ($16 \mathrm{~mm}^{3}, 200 \mu \mathrm{~mol}$) in dichloromethane $\left(0.25 \mathrm{~cm}^{3}\right)$. After 30 min , the mixture was poured into saturated aq. ammonium chloride $\left(5 \mathrm{~cm}^{3}\right)$ and extracted with diethyl ether ($3 \times 10 \mathrm{~cm}^{3}$). The combined organic layers were washed with brine ($10 \mathrm{~cm}^{3}$), dried over anhydrous magnesium sulfate, and evaporated under reduced pressure. Purification of the residue by flash chromatography (85% diethyl ether-light petroleum) and recrystallisation from ethyl acetate gave the dinitrobenzoate 46 ($33 \mathrm{mg}, 77 \%$) as yellow squares, m.p. $153{ }^{\circ} \mathrm{C}$ (Found: C, 50.8 ; $\mathrm{H}, 5.1 ; \mathrm{N}, 4.3 . \mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S}_{2}$ requires $\mathrm{C}, 50.62 ; \mathrm{H}, 5.03 ; \mathrm{N}$, 4.37%); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3522,3101,2950,2884,1726,1627$, 1597, 1543, 1459, 1344, 1280, 1228, 1168, 1090, 1036 and 729; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.72-1.80(1 \mathrm{H}, \mathrm{m}, 4$ - or $3-\mathrm{H}), 1.84(1 \mathrm{H}$, $\mathrm{dt}, J 12.8,9.9,7-\mathrm{H}) 1.94\left(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J 6.1,3-\right.$ or $\left.4-\mathrm{H}_{2}\right), 1.95-2.04$ ($2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}$), 2.25-2.34 ($1 \mathrm{H}, \mathrm{m}, 3-$ or $4-\mathrm{H}$, obscured by $9-\mathrm{H}$), 2.29 ($1 \mathrm{H}, \mathrm{dd}, J 3.9,14.7,9-\mathrm{H}$), 2.51 (1 H , br dd, $J 5.5,14.29-\mathrm{H}$), $2.67(1 \mathrm{H}$, ddd, $J 3.4,5.1,12.8,7-\mathrm{H}), 2.77-2.87\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}\right.$ - and $\left.6^{\prime}-\mathrm{H}\right), 2.92-3.00\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\right.$ or $\left.4^{\prime}-\mathrm{H}\right), 3.05(1 \mathrm{H}, \mathrm{d}, J 11.7,10 \mathrm{~b}-\mathrm{H})$, 3.09-3.18 ($1 \mathrm{H}, \mathrm{m}, 4^{\prime}$ - or $6^{\prime}-\mathrm{H}$), 3.28 (1 H, br d, $J 8.0, \mathrm{OH}$), 3.69 (1 $\mathrm{H}, \mathrm{d}, J 8.9,2-\mathrm{H}), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.77-3.86\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right)$, 3.90 (1 H , ddd, $J 2.7,6.8,11.3$, DNBOCH ${ }_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.98 (1 H , ddd, $\left.J 2.9,5.6,11.2, \mathrm{DNBOCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.09-4.15(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H})$, $4.14(1 \mathrm{H}, \mathrm{d}, J 11.7,10 \mathrm{a}-\mathrm{H}), 4.25(1 \mathrm{H}, \mathrm{d}, J 8.9,2-\mathrm{H}), 4.56(1 \mathrm{H}$, ddd, $J 2.7,5.6,11.7$, DNBOCH $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.63(1 \mathrm{H}$, ddd, $J 2.9$, 6.8, 11.6, $\left.\mathrm{DNBOCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 9.17(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Ph})$ and $9.23(1 \mathrm{H}$, $\mathrm{t}, \mathrm{J} 2.0, p-\mathrm{Ph}) ; m / z(\mathrm{EI}) 640\left(\mathrm{M}^{+}, 0.2 \%\right), 609$ (M - OMe, <0.1), $428\left(\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{6}, 0.8\right), 384\left(\mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{7}, 55\right), 223$ (90), $195\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{5}, 49\right), 161$ (100) and 135 (67).

Acknowledgements

We thank the SERC, ICI Agrochemicals for a scholarship to S. C. S., and Schering Agrochemicals Ltd. for a scholarship to H. C. K.

References

1 For part 12, see preceding paper.
2 J. N. Bilton, H. B. Broughton, P. S. Jones, S. V. Ley, Z. Lidert, E. D.

Morgan, H. S. Rzepa, R. N. Sheppard, A. M. Z. Slawin and D. J. Williams, Tetrahedron, 1987, 43, 2805; W. Kraus, M. Bokel, A. Bruhn, R. Cramer, I. Klaiber, A. Klenck, G. Nagl, H. Pöhnl, H. Sadlo and B. Vogler, Tetrahedron, 1987, 43, 2817; C. J. Turner, M. S. Tempesta, R. B. Taylor, M. G. Zagorski, J. C. Termini, D. R. Schroeder and N. Nakanishi, Tetrahedron, 1987, 43, 2789.
3 H. C. Kolb and S. V. Ley, Tetrahedron Lett., 1991, 32, 6187.
4 D. Craig, Chem. Soc. Rev., 1987, 16, 187.
5 G. Stein and K. Alder, Angew. Chem., 1937, 50, 514; K. Alder, Justus Liebigs Ann. Chem., 1951, 571, 157; K. Alder and M. Schumacher, Fortschr. Chem. Org. Naturst., 1953, 10, 1; R. Hoffmann and R. B. Woodward, J. Am. Chem. Soc., 1965, 87, 4388.
6 F. Johnson, Chem. Rev., 1968, 68, 375; R. W. Hoffmann, Chem. Rev., 1989, 89, 1841; for a related example see K. A. Parker and T. Iqbal, J. Org. Chem., 1987, 52, 4397.
7 F. K. Brown and K. N. Houk, Tetrahedron Lett., 1985, 26, 2297.
8 H. B. Broughton, D. Craig, S. V. Ley, A. M. Z. Slawin, A. A.

Somovilla, P. L. Toogood and D. J. Williams, Tetrahedron, 1989, 45, 2143
9 P. E. J. Sanderson and I. Fleming, Tetrahedron Lett., 1987, 28, 4229.
10 W. P. Roush and H. R. Gillis, J. Org. Chem., 1982, 47, 4825; D. A. Evans, K. T. Chapman and J. Bisaha, Tetrahedron Lett., 1984, 25, 4071.
$11 \mathrm{H} . \mathrm{B}$. Broughton, personal communication.
12 G. M. Sheldrick, SHELXTL version 5.1, 'Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data', University of Gottingen, 1978; revised version Dec. 1985.

Paper 2/02591D
Received 29th May 1992
Accepted 23rd June 1992

[^0]: ${ }^{a}$ Dimethyl sulfoxide. ${ }^{b}$ Yield for Tebbe methylenation and IMDA cyclisation.

[^1]: * Supplementary data (see section 5.6.3 of Instructions to Authors, January issue). Other crystallographic material (hydrogen coordinates, thermal parameters) have been deposited at the Cambridge Crystallographic Data Centre.

